last-tochka.ru

Площадь крыла формула. Расчет нагрузок, действующих на крыло в различных условиях эксплуатации. Геометрические данные крыла

где -удлинение крыла,

L – размах крыла, м, L=8 м,

S – площадь крыла, м 2 , S=12 м 2.

где η - сужение крыла

b o - корневая хорда, м, b o = 5,43 м,

b k - концевая хорда, м, b k =2,5 м.

Удлинение крыла

Угол стреловидности: 0 0

      Определение нагрузок, действующих на крыло

Нагрузки, действующие на крыло: для заданного случая нагружения определяем коэффициенты безопасности и максимальной эксплуатационной перегрузки. Величины эксплуатационных перегрузок в зависимости от максимального скоростного напораи полётной массыопределим по таблице типов самолетов.

Для данного типа самолёта принимаем n э = 8.

Исходя из случая нагружения, коэффициент безопасности выбираем f=2.

Расчётную перегрузку определим по формуле .

Следовательно n р = 8 × 2 = 16.

Случай соответствует криволинейному полёту с(отклоненные элероны или выход из пикирования) и с максимально возможной скоростью, соответствующей скоростному потокуq max . max . Заданными величинами являются ,;.

Этот случай характерен для нагружения хвостовой части крыла. Вследствие перемещения назад центра давления на крыло действует значительный крутящий момент.

Расчетная аэродинамическая нагрузка прямого крыла определяется по формуле:

где G – вес самолета, кг, G = 17000 кг,

относительная циркуляция по размаху прямого крыла, учитывающая изменение коэффициента подъемной силы крыла по размаху и сужению крыла.

Для стреловидного крыла значение должно быть уточнено поправкой, учитывающей стреловидность крыла. Значения величиниснимаем с графиков. Тогдарассчитываем по формуле:

Массовые силы конструкции крыла определяем по формуле:

где - вес крыла,= 0,11.

Массовые силы от веса топлива определяем по формуле:

где - вес топлива,,кг.

Все расчеты сводим в таблицу 1.

Таблица 1

Величина

По расчетным данным строим эпюру расчетной аэродинамической погонной нагрузки, эпюру расчетной массовой погонной нагрузки, эпюру расчетной суммарной погонной нагрузки (рис. 1).

Рис.1 Эпюры ,и

      Построение расчетных эпюр

Исходными данными для расчета крыла на прочность являются эпюры перерезывающих сил , изгибающихи крутящих моментов, построенные вдоль размаха крыла.

При построении эпюр крыло представляют как двухопорную балку с консолями, нагруженную распределенными и сосредоточенными силами. Опорами являются узлы крепления крыла к фюзеляжу.

Определяем реакции опор:

Эпюры,нужно строить от суммарной нагрузки

Используя дифференциальные зависимости:

получаем выражения идля любого сечения крыла:

Для каждого участка находим приращение перерезывающей силы:

.

Суммируя значения от свободного конца и учитывая значения сосредоточенных грузов и реакций фюзеляжа, получаем значение перерезывающей силы в произвольном- ом сечении крыла

.

Аналогично определяем значение изгибающего момента в любом сечении крыла:

, .

Приняв количество сечений i = 10, ∆z = 0,5 м.

С учётом стреловидности крыла перерезывающую силу и изгибающий момент определим по формулам:

где - угол стреловидности.

Результаты сведены в таблицу 2.

Таблица 2

По полученным данным строим эпюру изгибающих моментов (рис.2).

Для построения эпюр крутящих моментов, истинный крутящий момент должен быть определён относительно центра изгиба (жёсткости). Примем координату положения линии центров изгиба (жёсткости):

х ж = 0,38в СЕЧ.

Тогда а = 0,2b СЕЧ, а 1 = 0,4b СЕЧ.

Погонный крутящий момент в любом сечении относительно линии центров изгиба, оси определяется следующим образом:

Полный крутящий момент будет равен:

При наличии стреловидности :.

Эпюра строится только до борта фюзеляжа. При определениитакже удобно пользоваться методом трапеций с применением таблицы 3:

Где ; .

Таблица 3

Рис. 2 Эпюры погонного крутящего момента m и крутящего момента .

      Проектировочный расчет крыла

На данном этапе подберём величины площади поперечных сечений силовых элементов крыла. Силовая схема крыла – двухлонжеронная, аэродинамический профиль сечения NASA2411 .

Определяем угол конусности крыла:

где -относительная толщина профиля.

Отсюда .

Перерезывающая сила в расчетном сечении равна:

где и-высота первого и второго лонжеронов,

Модуль упругости материалов поясов.

От перерезывающих сил в стенках лонжеронов действуют погонные касательные силы:

Погонные касательные силы в стенках лонжеронов от крутящего момента:

где -площадь контура межлонжеронной части сечения.

Суммарные касательные потоки в стенках лонжеронов от перерезывающих сил и крутящих моментов:

Толщины стенок лонжеронов и обшивки определяются по следующим формулам:

где - разрушающее касательное напряжение.

Берем шаг стрингеров 118 мм, получаем количество стрингеров

Определяем силы, действующие на верхней и нижней панелях крыла:

Где высота сечения,

Число стрингеров,

Ширина межлонжеронной части крыла.

Коэффициент 0,9 в величине учитывает ослабление обшивки отверстиями под заклепки.

Суммарная площадь растянутых и сжатых поясов лонжеронов:

Для сжатых поясов,

- для растянутых поясов,

где принимаем равным.

Министерство общего образования Российской Федерации

Новосибирский государственный технический университет

КОНСТРУКЦИЯ И РАСЧЕТ

ЭЛЕМЕНТОВ ПЛАНЕРА САМОЛЕТА НА ПРОЧНОСТЬ.

КРЫЛО.

Методические указания к выполнению курсовых

и дипломных проектов для студентов

III- V курсов (специальность 1301)

факультета летательных аппаратов

Новосибирск

Составители: В.А. Бернс канд.техн.наук,

Е.Г. Подружин канд.техн.наук,

Б.К. Смирнов, техн.наук.

Рецензент: В.Л. Присекин, д-р.техн.наук, проф.

Работа выполнена на кафедре

самолето- и вертолетостроения

Новосибирский государственный

технический университет, 2000 г.

ЗАДАЧИ, СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ

КУРСОВОГО ПРОЕКТА

Цель курсового проекта – более глубокое и детальное ознакомление студентов с особенностями конструкции самолета и овладение практическими приемами расчета на прочность элементов планера самолета.

Задание на курсовой проект предусматривает решение следующих задач:

    Выбор прототипа самолета по его характеристикам, являющимися исходными данными к проекту.

    Определение массовых и геометрических характеристик самолета, необходимых для расчета нагрузок, по выбранному прототипу, компоновка крыла.

    Назначение эксплуатационной перегрузки и коэффициента безопасности для заданного расчетного случая.

    Определение нагрузок, действующих на крыло при выполнении самолетом заданного маневра, построение эпюр.

    выбор типа конструктивно-силовой схемы крыла (лонжеронное, кессонное, моноблочное) и подбор параметров сечения (расстояния от корня крыла до расчетного сечения задается преподавателем).

    Расчет сечения крыла на изгиб.

    Расчет сечения крыла на сдвиг.

    расчет сечения крыла на кручение.

    Проверка обшивки крыла и стенок лонжерона на прочность и устойчивость.

    Расчет на прочность элементов крыла (по указанию преподавателя).

Примечания.

    Все расчеты проводятся на ПЭВМ, в пояснительную записку вставляется распечатка результатов расчета.

    Необходимый объем расчетов из перечисленных разделов проекта назначается преподавателем индивидуально.

    Оформление расчетно-пояснительной записки производится в соответствии с ГОСТ 2.105-79.

    Защита курсового проекта проводится публично, всеми студентами группы в одно время.

Обозначения:

L - размах крыла;

S - площадь крыла;

- удлинение крыла;

- сужение крыла;

Относительная толщина профиля сечения крыла;

Относительная толщина профиля соответственно в корневом и

концевом сечениях крыла;

 0,25 - стреловидность крыла по линии четвертей хорд;

G- взлетный вес самолета;

G кр. - вес крыла;

b- текущая хорда крыла;

b корн. - корневая хорда крыла;

b конц. - концевая хорда крыла;

f- коэффициент безопасности;

- максимальная эксплуатационная перегрузка в направлении оси Y;

- относительная циркуляция прямого плоского крыла;

- относительная циркуляция крыла с учетом стреловидности;

q аэр - погонная аэродинамическая нагрузка на крыло;

Q аэр - перерезывающая сила в сечении крыла от аэродинамической нагрузки;

M аэр - момент аэродинамической нагрузки в сечении крыла;

Q кр - перерезывающая сила от веса крыла;

M кр - момент силы веса в сечении крыла;

G топл - вес топлива в крыльевых баках;

Q топл - перерезывающая сила от веса баков с топливом;

G агр - вес агрегатов и сосредоточенных грузов;

M топл - момент сил веса баков с топливом;

Q соср - перерезывающая сила от сосредоточенных масс;

M соср - момент сосредоточенных инерционных сил;

N – растягивающее усилие, действующее в панели крыла;

 - толщина обшивки;

H - высота лонжерона;

e - шаг стрингеров;

a - расстояние между нервюрами;

n - число стрингеров;

F стр - площадь сечения стрингера;

F л-н - площадь сечения полки лонжерона;

 ст - толщина стенки лонжерона;

 в - напряжение предела прочности материала;

 кр,  кр - напряжения потери устойчивости соответственно при сжатии и сдвиге;

E - модуль продольной упругости;

G - модуль сдвига;

 - коэффициент Пуассона.

ПОРЯДОК ПРОЧНОСТНОГО РАСЧЕТА НА ПЭВМ

Расчет крыла самолета производится на ПЭВМ. Расчет разбит на несколько этапов. На первом этапе определяются нагрузки, действующие на крыло. Необходимая для этого информация вводится в ПЭВМ в диалоговом режиме в ответ на запросы появляющиеся на экране компьютера после запуска программы NAGR.EXE. В дальнейшем создается файл данных NAGR.DAT, куда заносится вводимая информация и в последующих расчетах можно менять исходные данные в файле данных.

Прежде чем воспользоваться программой NAGR.EXE, необходимо подготовить исходные данные к расчету нагрузок, что включает в себя выбор прототипа самолета, установление массовых и геометрических характеристик самолета, компоновку крыла, назначение величин эксплуатационной перегрузки и коэффициента безопасности

При расчете нагрузок в ПЭВМ заносятся (бесформатный ввод) следующие параметры:

    корневая и концевая хорды [м];

    размах крыла [м];

    коэффициент безопасности [б/р];

    взлетный вес самолета [т];

    эксплуатационная перегрузка [б/р];

    относительная циркуляция (11 значений из табл. 1) [б/р];

    угол стреловидности по линии четвертей хорд крыла [град];

    относительная толщина профиля в корневом и концевом сечениях [б/р];

    вес крыла [т];

    количество топливных баков в крыле [б/р];

    удельный вес топлива [т/м 3 ];

    относительные координаты начальных и концевых хорд баков [б/р];

    начальные хорды баков [м];

    концевые хорды баков [м];

    расстояние от условной оси (рис.1) до линии ц.т. топлива в корневом и концевом сечениях крыла [м];

    количество агрегатов [б/р];

    вес агрегатов [т];

    относительные координаты агрегатов [б/р];

    расстояние от условной оси до ц.т. агрегатов [м];

    расстояние от условной оси до линии ц. д. в корневом и концевом сечениях крыла [м];

    расстояние от условной оси до линии ц. ж. в корневом и концевом сечениях крыла [м];

    расстояние от условной оси до линии ц. т. в корневом и концевом сечениях крыла [м];

Результаты расчетов по программе NAGR.EXE заносятся в файл NAGR.DAT, в котором приведены с соответствующими комментариями введенные на первом этапе данные, а также выводятся рассчитанные программой площадь крыла, его сужение, удлинение, эксплуатационная и разрушающая нагрузки, действующие в крыле, и таблицы нагрузок, действующих в крыле от различных силовых факторов:

    таблица аэродинамических нагрузок (табл.1);

    таблица нагрузок от веса конструкции крыла (табл.2);

    таблица нагрузок от веса баков с топливом (табл.3);

    таблица нагрузок от сосредоточенных сил (табл.4)

    таблица суммарных перерезывающих сил и изгибающих моментов от всех силовых факторов (табл.5);

    таблица моментов всех сил, действующих на крыло, относительно оси z усл. (табл.6);

    таблица изгибающих и крутящих моментов, действующих в сечениях нормальных оси жесткости крыла (табл.7);

На втором этапе с помощью программы REDUC.EXE осуществляется расчет крыла на изгиб методом редукционных коэффициентов. Подготовка исходных данных для программы REDUC.EXE заключается в выборе типа силовой схемы крыла, подборе параметров расчетного сечения (см. п. 5.1-5.3). Методика расчета сечения крыла на изгиб методом редукционных коэффициентов изложена в п. 6.1.

Исходными данными для программы REDUC.EXE (для программы реализован ввод исходных данных в двух режимах – диалоговом и файловом) являются:

    число стрингеров на верхней панели крыла [б/р];

    число стрингеров на нижней панели крыла [б/р];

    высоты и толщины свободных полок стрингеров в сжатой (верхней) панели крыла [см];

    площади поперечных сечений стрингеров [см 2 ];

    моменты инерции стрингеров верхней панели [см 4 ];

    координаты x,y центров тяжести стрингеров [см];

    модули упругости материалов стрингеров и лонжеронов [кг/см 2 ];

    толщины обшивки на верхней и нижней панелях крыла [см];

    число лонжеронов [б/р];

    площади поперечных сечений лонжеронов [см 2 ];

    координаты x,y центров тяжести полок лонжеронов [см];

    высоты лонжеронов [см];

    напряжения предела прочности для материалов лонжеронов и стрингеров [кг/см 2 ];

    изгибающий момент [кгсм];

    шаг нервюр [см];

    шаг стрингеров в сжатой и растянутой панелях крыла[см];

Результаты расчета программы REDUC.EXE являются таблицы помещаемые в файл REZ.DAT, в которых для каждой итерации приводятся следующие величины:

    номера стрингеров и лонжеронов;

    площади сечений стрингеров и лонжеронов;

    суммарная площадь сечений подкрепляющих элементов с присоединенной обшивкой;

    величины редукционных коэффициентов;

    критические напряжения в стрингерах при общей потере устойчивости;

    критические напряжения в стрингерах при местной потере устойчивости;

    допускаемые напряжения в стрингерах и лонжеронах;

    действительные напряжения в стрингерах и лонжеронах.

Кроме перечисленной информации формируются два файла данных CORD.DAT и DAN.DAT. В первый из этих файлов заносятся координаты x,y центров тяжести стрингеров, а во второй остальная информация, вводимая в диалоговом режиме при первом обращении к программе, что позволяет при дальнейшей работе с программой корректировать вводимую информацию более эффективно.

На третьем этапе производится расчет сечения крыла на сдвиг и кручение. Методика расчета сечения крыла на сдвиг и кручение изложена в п. 7.1, 8.1, 8.2. Программы для этих расчетов составляются самостоятельно.

На четвертом этапе производится подготовка заключения о прочности крыла. Подготовка данного заключения производится в соответствии с п. 9.

На пятом этапе производится проектирование и расчет на прочность элемента крыла. Проектированию подлежит элемент, указанный преподавателем.

Расчет на прочность элемента крыла подразумевает разработку расчетной схемы; определение нагрузок, действующих на данный элемент; расчет напряжений; подбор характеристик элемента из условия его прочности.

МЕТОДИКА РЕШЕНИЯ ЗАДАЧ КУРСОВОГО ПРОЕКТА

I . Выбор прототипа самолета по его характеристикам

Исходными данными к проекту являются следующие характеристики: размах крыла L, площадь крыла S, сужение крыла η, относительная толщина профиля в корневом и концевом сечениях крыла, стреловидность крыла по линии четвертей хорд χ 0,25 , взлетный вес самолета G, расчетный случай (А, А ′ , В и т.д.). По геометрическим и массовым характеристикам самолета определяется его прототип, например, по работам .

2. Установление массовых и геометрических характеристик самолета, компоновка крыла

Для найденного прототипа выясняются особенности компоновки крыла (количество и расположение двигателей, шасси, топливных баков, органов управления, механизации, сосредоточенных грузов на узлах внешней подвески), вес топлива и агрегатов, расположенных на крыле. В случае, если массовые характеристики агрегатов не удается найти в литературе, то их величины определяются (по согласованию с преподавателем) с использованием статистических данных для рассматриваемого типа самолетов .

С использованием найденных геометрических характеристик выполняется эскиз крыла в масштабе 1:5, 1:6, 1:10, 1:25, производится его компоновка (размещение лонжеронов, топливных баков, шасси, двигательных установок, различных грузов и т.д.). Геометрические характеристики крыла, необходимые для его построения, определяются по формулам:

, ,

Угол стреловидности крыла χ задан по линии, проходящей через четверти хорд (рис. 1). На крыле, вычерченном в масштабе, необходимо нанести линию центров тяжести, линию, проходящую через четверти хорд, линию центров давления, условные оси координат и разбить крыло на сечения ;. Здесь .

3. Назначение эксплуатационной перегрузки и коэффициента безопасности

Величина эксплуатационной перегрузки и коэффициент безопасности для заданного самолета и расчетного случая назначается с использованием работ и лекционного материала. В тексте пояснительной записке необходимо обосновать выбор числовых значений этих параметров. В зависимости от степени потребной маневренности все самолеты делятся на три класса

Класс А - маневренные самолеты, к которым относятся самолеты, совершающие резкие маневры, например истребители (). Кратковременно перегрузка для таких самолетов может достигать 1011 единиц.

Класс Б – ограниченно маневренные самолеты, которые совершают маневр, в основном, в горизонтальной плоскости ().

Класс В – неманевренные самолеты, не совершающие сколь-нибудь резкого маневра ().

Транспортные и пассажирские самолеты относятся к классу В, бомбардировщики к классу Б или В. Истребители относятся к классу А.

Все разнообразие нагрузок, действующих на самолет, сводится к расчетным режимам или расчетным случаям, которые сведены в специальный документ . Обозначаются расчетные случаи буквами латинского алфавита с индексами. В таблице 1 приведены некоторые расчетные случаи нагружения самолета в полете.

Коэффициент безопасности f назначается от 1,5 до 2,0 в зависимости от продолжительности действия нагрузки и повторяемости ее в процессе эксплуатации.

Максимальную эксплуатационную перегрузку при маневре самолета с убранной взлетно-посадочной механизацией определяют следующим образом

при m 8000 кг

при m  27500 кг

Для промежуточных значений полетной массы перегрузка определяется по формуле

4

. Определение нагрузок, действующих на крыло

Конструкция крыла рассчитывается по разрушающим нагрузкам

,

4.1 Определение аэродинамических нагрузок

Аэродинамическая нагрузка распределяется по размаху крыла в соответствии с изменением относительной циркуляции
(при вычислении
коэффициента влиянием фюзеляжа и мотогондол можно пренебречь). Значения следует брать из работы , где они задаются в виде графиков или таблиц для различных сечений крыла в зависимости от его характеристик (удлинения, сужения, длины центроплана и т.д.). Можно воспользоваться данными приведенными в таблице 2.

Таблица 2

Распределение циркуляции по сечениям для трапецевидных крыльев

Расчетная погонная аэро-динамическая нагрузка (направление q аэр. прибли-женно можно считать перпендикулярным плос-кости хорд крыла) для плоского крыла при

(1)

Для крыльев со стрело-видностью

, (2)

(3)

При учете стреловидности не принимается во внимание крутка крыла. Для крыльев со стреловидностью χ › 35 о формула (3) дает ошибку в значениях циркуляции до 20 %.

Методика расчета для неплоских крыльев любой формы изложена в работе .

По эпюре распределенных нагрузок q аэр, вычисленных для 12 сечений по формулам (1) или (2), строятся последовательно эпюры Q аэр. и M аэр. . Используя известные дифференциальные зависимости, находим

Интегрирование проводится численно, используя метод трапеций (рис.2). По результатам вычислений строятся эпюры изгибающих моментов и перерезывающих сил.



4.2 Определение массовых и инерционных сил

4.2.1 Определение распределенных сил от собственного веса конструкции крыла. Распределение массовых сил по размаху крыла с незначительной погрешностью можно считать пропорциональным аэродинамической нагрузке

,

или пропорционально хордам

Погонная массовая нагрузка приложена по линии центров тяжести сечений, расположенной, обычно, на 40-50% хорды от носка. По аналогии с аэродинамическими силами определяются Q кр. и M кр. . По результатам вычислений строят эпюры.

4.2.2 Определение распределенных массовых сил от веса баков с топливом. Распределенная погонная массовая нагрузка от баков с топливом

где γ – удельный вес топлива; B – расстояние между лонжеронами, являющимися стенками бака (рис.3).

Относительная толщина профиля в сечении

4.2.3 Построение эпюр от сосредоточенных сил. Сосредоточенные инерционные силы от агрегатов и грузов, расположенных в крыле и присоединенных к крылу, приложены в их центрах тяжести и принимаются направленными параллельно аэродинамическим силам. Расчетная сосредоточенная нагрузка

Результаты приводятся в виде эпюр Q соср. и M соср. . Строятся суммарные эпюры Q Σ и M xΣ от всех сил, приложенных к крылу, с учетом их знаков:

4.3 Вычисление моментов, действующих относително условной оси

4.3.1 Определение
от аэродинамических сил. Аэродинамические силы действуют по линии центров давления, положение которой считается известным. Вычертив крыло в плане, отметим положение ΔQ аэр i на линии центров давления и по чертежу определим h аэр i (рис.5).

Далее вычисляем
и
по формулам

и строим эпюру.

4.3.2. Определение от распределенных массовых сил крыла (и
). Массовые силы, распределенные по размаху крыла, действуют по линии центров тяжести его конструкции (см. рис. 5).

где
- расчетная сосредоточенная сила от веса части крыла между двумя соседними сечениями;
- плечо от точки приложения силы до оси
. Аналогично вычисляются значения
. По расчетам строятся эпюры и .

4.3.3 Определение
от сосредоточенных сил.

,

где, расчетный вес каждого агрегата или груза;
-расстояние от центра тяжести каждого агрегата или груза до оси.

После вычисления
определяется суммарный момент
от всех сил, действующих на крыло, и строится эпюра (имеется ввиду алгебраическая сумма).

4.4 Определение расчетных значений
и
для заданного сечения крыла

Для определения и следует:

Найти приближенное положение центра жесткости (рис. 6)

,

где
- высота i-го лонжерона; - расстояние от выбранного полюса А до стенки i-го лонжерона; m – количество лонжеронов;

Вычислить момент относительно оси Z, проходящей через приближенное положение центра жесткости и параллельной оси Z усл.

;

Для стреловидного крыла сделать поправку на стреловидность (рис.7) по формулам



5. Выбор конструктивно-силовой схемы крыла, подбор параметров

расчетного сечения

5.1 Выбор конструктивно- силовой схемы крыла

Тип конструктивно-силовой схемы крыла выбирается с использованием рекомендаций, изложенных в лекциях и работах .

5.2 Выбор профиля расчетного сечения крыла

Относительная толщина профиля расчетного сечения определяется по формуле (4). Из работы выбирается симметричный (для простоты) профиль, соответствующий по толщине рассматриваемому типу самолета и составляется таблица 3. Подобранный профиль вычерчивается на миллиметровой бумаге в масштабе (1:10, 1:25). В случае отсутствия в справочнике профиля необходимой толщины можно взять из справочника наиболее близкий по толщине профиль и все данные пересчитать по формуле

Таблица 3.

,

где y – расчетное значение ординаты;
- табличное значение ординаты;
- таб-личное значение относительной толщины профиля крыла.

Для стреловидного крыла следует сделать поправку на стреловидность по формулам

,

5.3 Подбор параметров сечения (ориентировочный расчет)

5.3.1 Определение нормальных усилий, действующих на панели крыла

Для последующих расчетов будем считать положительными направления
, и
в расчетном сечении (рис. 8). Пояса лонжеронов и стрингеры с присоединенной обшивкой воспринимают изгибающий момент . Усилия, нагружающие панели, можно определить из выражения

,

где
; F – площадь поперечного сечения крыла, ограниченная крайними лонжеронами; B - расстояние между крайними лонжеронами; (рис. 9).

Для растянутой панели усилие N принять со знаком плюс, для сжатой - со знаком минус.

На основе статистических данных в расчете следует принять усилия, воспринимаемые полками лонжеронов - ,
,
.

Значения коэффициентов , ,  даны в таблице 4 и зависят от типа крыла.

Таблица 4.

5.3.2. Определение толщины обшивки. Толщину обшивки  для растянутой зоны определяют по 4-ой теории прочности:

где - напряжение предела прочности материала обшивки;  - коэффициент, значение которого приведено в таблице 4. Для сжатой зоны толщину обшивки следует принять равной
.

5.3.3 Определение шага стрингеров и нервюр. Шаг стрингеров и нервюр а выбирают с таким расчетом, чтобы поверхность крыла не имела недопустимой волнистости.

Для расчета прогибов обшивки считаем ее свободно опертой на стрингеры и нервюры (рис. 10). Наибольшее значение прогиба достигается в центре рассматриваемой пластины:

,

где
-удельная нагрузка на крыло; -цилиндрическая жесткость обшивки. Значения коэффициентов d в зависимости от
приведены в работе . Обычно это отношение равно 3.

Расстояние между стрингерами и нервюрами следует выбирать так, чтобы
.

Число стрингеров в сжатой панели

,

где - длина дуги обшивки сжатой панели.

Количество стрингеров в растянутой панели следует уменьшить на 20%. Как отмечалось выше, расстояние между нервюрами
.

5.3.4 Определение площади сечения стрингеров. Площадь сечения стрингера в сжатой зоне в первом приближении

,

где
- критическое напряжение стрингеров в сжатой зоне (в первом приближении
).

Площадь сечения стрингеров в растянутой зоне

,

где - предел прочности материала стрингера при растяжении.

5.3.5 Определение площади сечения лонжеронов. Площадь полок лонжеронов в сжатой зоне

,

где
- критическое напряжение при потере устойчивости полки лонжерона.
(берется предел прочности материала лонжерона).

Площадь каждой полки двухлонжеронного крыла находится из условий

, (5)

а для трехлонжеронного крыла

Площадь лонжеронов в растянутой зоне

,

где k – коэффициент, учитывающий ослабление поясов лонжеронов крепежными отверстиями; при заклепочном соединении k = 0,9 ÷ 0,95.

Площадь каждой полки находится аналогично площади в сжатой зоне из условий (5) или (6).

5.3.6 Определение толщины стенок лонжеронов. Предполагаем, что вся перерезывающая сила воспринимается стенками лонжеронов

где - сила, воспринимаемая стенкой i-го лонжерона. Для трехлонжеронного крыла (n=3)

где
- высоты стенок лонжеронов в расчетном сечении крыла.

Толщина стенки

. (7)

Здесь - критическое напряжение потери устойчивости стенки лонжерона крыла от сдвига (рис. 11). Для вычислений следует принять все четыре стороны стенки свободно опертыми:

где
при a >, при a следует заменить в (8)на a, а в формуле для - на
. Формула (8) справедлива для

Подставляя значения
из (8) в (7), находим толщину стенки i-го лонжерона

.

6. Расчет сечения крыла на изгиб

Для расчета сечения крыла на изгиб вычерчивается профиль расчетного сечения крыла, на котором размещаются пронумерованные стрингеры и лонжероны (рис.12). В носике и хвостике профиля следует располагать стрингеры с большим шагом, чем между лонжеронами. Расчет сечения крыла на изгиб проводится методом редукционных коэффициентов и последовательных приближений.

6.1 Порядок расчета первого приближения

Определяются в первом приближении приведенные площади поперечного сечения продольных ребер (стрингеров, поясов лонжеронов) с присоединенной обшивкой

где - действительная площадь сечения i-го ребра;
- присоединенная площадь обшивки (- для растянутой панели,
- для сжатой панели); - редукционный коэффициент первого приближения.

Если материал полок лонжеронов и стрингеров разный, то следует сделать приведение к одному материалу через редукционный коэффициент по модулю упругости

,

где - модуль материала i-го элемента; - модуль материала, к которому приводится конструкция (как правило, это материал пояса самого нагруженного лонжерона). Тогда



В случае разных материалов поясов лонжеронов и стрингеров в формулу (9) вместо подставляется
.

Определяем координаты и центров тяжести сечений продольных элементов профиля относительно произвольно выбранных осей и (рис. 12) и вычисляем статические моменты элементов
и
.

Определяем координаты центра тяжести сечения первого приближения по формулам

,
.

Через найденный центр тяжести проводим оси и (ось удобно выбрать параллельной хорде сечения) и определяем координаты центров тяжести всех элементов сечения относительно новых осей.

Вычисляем моменты инерции (осевые и центробежный) приведенного сечения относительно осей и:

, ,
.

Определяем угол поворота главных центральных осей сечения:

.

Если угол α будет больше 5 о, то оси и следует повернуть на этот угол (положительное значение угла соответствует вращению осей по часовой стрелке) и далее вести расчет относительно главных центральных осей. В целях упрощения расчета угол α рекомендуется вычислять только при расчетах последнего приближения. Обычно, если ось выбрана параллельно хорде сечения, угол α оказывается незначительным и им можно пренебречь.

Определяем напряжения в элементах сечения в первом приближении

.

Полученные напряжения сравниваем с
и
для сжатой панели и с
и - для растянутой панели.

6.2 Определение критических напряжений стрингеров

Критическое напряжение стрингера вычисляется из условия общей и местной форм потери устойчивости. Для вычисления
общей формы потери устойчивости используем выражение

, (10)

где
. Здесь
- критическое напряжение, вычисленное по формуле Эйлера:

(11)

где - коэффициент, зависящий от условий опирания концов стрингера;- шаг нервюр;- гибкость стрингера с присоединенной обшивкой; - радиус инерции относительно центральной оси сечения.

В формуле (11) под следует понимать
, но в целях упрощения положение главной инерциальной оси считаем совпадающим с осью x.

В свою очередь

,

где - момент инерции стрингера с присоединенной обшивкой отно-сительно оси x (рис.13);
- площадь сечения стрингера с присо-единенной обшивкой. Ширина при-соединенной обшивки берется рав-ной 30 δ (рис.13).

где
- момент инерции присоединенной обшивки относительно собственной центральной оси x 1 (обычно значения -малы);
- момент инерции стрингера относительно собственной центральной оси x 2 .

Для вычисленияместной формы потери устойчивости рассмотрим потерю устойчивости свободной полки стрингера как пластины, шарнирно опертой по трем сторонам (рис.14). На рис. 14 обозначено: а – шаг нервюр; b 1 – высота свободной полки стрингера (рис.13). Для рассматриваемой пластинки
вычисляется по асимптотической формуле (10), в которой

где k σ – коэффициент, зависящий от условий нагружения и опирания пластины,  с – толщина свободной полки стрингера.

Для рассматриваемого случая

.

Для сравнения с действительными напряжениями, полученными в результате редуцирования, выбирается меньшее напряжение, найденное из расчетов общей и местной потери устойчивости.

В процессе редуцирования необходимо обратить внимание на следующее: если напряжения в сжатой полке лонжерона окажутся больше или равными разрушающим в любом из приближений, то конструкция крыла не способна выдержать расчетную нагрузку и ее надо усилить. Дальнейшие приближения в этом случае делать не следует. Если в каком-либо сжатом стрингере с номером "k" (с присоединенной обшивкой) напряжение окажется меньше , то редукционный коэффициент для него и в последующем приближении следует оставить прежним; если в каком-либо сжатом стрингере (с присоединенной обшивкой) с номером "m" напряжение окажется больше
то в последующем приближении редукционный коэффициент следует вычислять по формуле

;

если ни в одном стрингере напряжение не превысит , то конструкция явно перетяжелена и требует облегчения.

В растянутой зоне уточнение редукционных коэффициентов в процессе последовательных приближений ведется так же, но сравнение расчетных напряжений ведется не с , а с .

В результате мы получаем новые уточненные редукционные коэффициенты последующего приближения
. Далее рассчитываем следующее приб-лижение в том же порядке и снова уточняем редукционные коэффициенты. Расчет продолжается до тех пор, пока редукционные коэффициенты двух последующих приближений практически совпадут (в пределах 5%).

7. Расчет сечения крыла на сдвиг

Расчет сечения крыла на сдвиг ведется без учета влияния кручения (поперечная сила считается приложенной в центре жесткости сечения, полагая, что на сдвиг работают стенки лонжеронов и обшивка).

7.1 Порядок расчета

Для расчета многоконтурного сечения на сдвиг делаются продольные разрезы в панелях таким образом, чтобы контур стал открытым. Для сечения крыла разрезы удобно делать в плоскости хорд в носке крыла и в стенках лонжеронов (рис. 15). В местах разрезов прикладываются неизвестные замыкающие погонные касательные усилия.

Погонные касательные усилия в обшивке панелей сечения крыла определяются как сумма погонных касательных усилий
в незамкнутом контуре и замыкающих усилий. Усилия определяются формулой

, (12)

где
-расчетная перерезываю-щая сила;
- статический момент площади части сечения, ограниченного 1-м и (i-1) – м ребрами (принятый порядок нумерации ребер очевиден из рис. 14);
- главный момент инерции всего сечения, причем положение центра тяжести берется из последнего приближения расчета на изгиб.

В формуле (12) направление поперечной силы считается положительным при его совпадении с положительным направлением оси y, т.е. вверх. Положительные направления потоков касательных усилий совпадают с направлением обхода начала координат по часовой стрелке.

Для определения замыкающих потоков погонных касательных усилийсоставляем канонические уравнения

Коэффициенты канонических уравнений (элементы матрицы
и вектора
) определяются выражениями:

,
,
,

(здесь суммирование ведется по панелям, где
не равны нулю соответственно),

,
,- приведенный модуль сдвига (для обшивки из дюраля
) ;
- редуцированная толщина обшивки
;
- редукционный коэффи-циент обшивки.

Модуль сдвига обшивки панели крыла не равен модулю сдвига материала обшивки, а зависит еще от ее кривизны, толщины, шага нервюр и стрингеров (размеров подкреп-ляющей клетки), подкрепля-ющих профилей, характера нагружения пластины. Значения модуля сдвига более или менее точно определяются опытным путем для данной конструкции. В расчете приходится большей частью пользоваться средними величинами G, полученными из испытаний аналогичных конструкций. Так как

,

то при вычислении мы будем пользоваться значениями редукционных коэффициентов, приведенными на рис. 15. Значения коэффициента для обшивки из другого материала следует умножить на - потоки погонных касательных усилий в открытом контуре сечения крыла от сдвига;

По результатам расчета строим суммарную эпюру потоков погонных касательных усилий от сдвига и кручения по контуру расчетного сечения крыла. При построении суммарной эпюры положительные значения потоков откладываем внутрь контура сечения.

9. Проверка обшивки и стенок лонжеронов на прочность и устойчивость

В результате проверочного расчета должно быть дано заключение о прочности подобранного сечения крыла. Для этого обшивка и стенки лонжеронов проверяются на прочность и устойчивость.

Максимальные нормальные напряжения, действующие на соответствующую панель обшивки (или стенки лонжерона) с учетом

а значения редукционного коэффициента обшивки находятся по выражению

При проверке обшивки на прочность вычисляются значения коэффициента

Кравец А.С. Характеристики авиационных профилей. – М.: Оборонгиз, 1939.

Макаревский А.И., Корчемкин Н.Н., Француз Т.А., Чижов В.М. Прочность самолета. – М.: Машиностроение, 1975. 280с.

Единые нормы летной годности гражданских транспортных самолетов стран – членов СЭВ. – М.: Изд-во ЦАГИ, 1985. 470с.

Одиноков Ю.Г. Расчет самолета на прочность. – М.: Машиностроение, 1973. 392с.

Прочность, устойчивость, колебания: Справочник в 3-х т./ Под ред. Биргера И.А., Пановко Я.Г. – М: Машиностроение, 1971.

Авиация. Энциклопедия. Под ред. Свищева Г. П. – М: Изд-во большая Российская энциклопедия, 1994. 736с.

Heinz A.F. Schmidt. Flieger – Jahrbuch. – Berlin: Transpress VEB Verlag für Verkehrswesen, 1968 - 1972. 168S.

Heinz A.F. Schmidt. Flieger – Jahrbuch. – Berlin: Transpress VEB Verlag für Verkehrswesen, 1973. 168S.

Heinz A.F. Schmidt. Flieger – Jahrbuch. – Berlin: Transpress VEB Verlag für Verkehrswesen, 1980. 168S.

Heinz A.F. Schmidt. Flügzeuge aus aller Welt. V. 1 – 4. – Berlin: Transpress VEB Verlag für Verkehrswesen, 1972 - 1973.

Расчет нужного... или подвесными для обслуживания элементов конструкции самолета на разных уровнях. Для повышения...

  • Технико-экономическое обоснование проекта самолета

    Реферат >> Экономика

    2.2. Методика расчета стоимостных показателей самолета , его систем…………………………………………………………………………...29 2.3. Расчет стоимостных показателей... материала в массе конструкции планера . Тпл = 30 * V пл Т ш = 0,2 * G о где G о – взлетная масса самолета Т пл = 1,5 * ...

  • Расчёт гидросистемы МИГ-

    Реферат >> Астрономия

    На сверхзвуковых скорос-тях. Планер самолета представляет собой корпус в... ограни-чений, наложенных на конструкцию самолета по максимальному скоростном напору q. ... при выдвижении штока: ; ; ; ; ; ; ; ; ; . Расчет корпуса гидроцилиндра (тонкостенная труба из...

  • Проектирование сборочных приспособлений

    Реферат >> Промышленность, производство

    Обеспечения высокой технологичности конструкций состоит в том, что конструкция разрабатывается с расчетом на применение при... погрешностей изготовления деталей. Сборка частей планера самолета в сборочных приспособлениях обеспечивают точность готового...

  • Расчет аэродинамических характеристик крыла с использованием программного комплекса ANSYS CFX

    Создание летательного аппарата нового поколения невозможно без анализа его аэродинамических характеристик еще на ранних стадиях проектирования. От глубины исследования формы несущих поверхностей и обводов планера напрямую зависят летно-технические характеристики разрабатываемого самолета. Развитие теоретических основ численных методик расчета аэродинамических характеристик летательных аппаратов можно разделить на несколько этапов:

    • линейная теория (60-е годы);
    • нелинейная теория полного потенциала скорости (70-е годы);
    • уравнения Эйлера (80-е годы);
    • уравнения Навье — Стокса, осредненные по Рейнольдсу (90-е годы).

    Физику процесса обтекания тела произвольной формы потоком газа наилучшим образом отражают методики, основанные на решениях уравнений Навье — Стокса. С появлением программных средств, базирующихся на численных решениях уравнений Навье — Стокса, стало возможно получить расчетным путем ряд важных аэродинамических характеристик самолета, в частности вычислить максимальное значение коэффициента подъемной силы Cy max . При расчетах аэродинамических характеристик объектов сложной пространственной конфигурации с использованием такого подхода требуются большие объемы оперативной памяти компьютера, поскольку допустимые размеры расчетной сетки пропорциональны объему оперативной памяти компьютера. Рост возможностей вычислительной техники, наблюдаемый в последние годы, позволяет применять программы, основанные на численных решениях уравнений Навье — Стокса, для расчета характеристик обтекания таких объектов, как самолет. Одной из популярных коммерческих программ в этой области является ANSYS CFX (лицензия ЦАГИ № 501024).

    Использование CFX в области авиастроения является рациональным, поскольку пакет ANSYS, помимо аэродинамического модуля CFX, содержит ряд других вычислительных модулей (STRUCTURAL, FATIQUE и д.р.), что обеспечивает возможность совместного решения задач аэродинамики, аэроупругости и прочности.

    Рассмотрим особенности расчета обтекания прямого крыла бесконечного размаха с профилем GA(W)-1. Этот профиль был создан известным американским аэродинамиком Уиткомбом для применения на дозвуковых скоростях полета.

    Комплекс ANSYS оснащен встроенными интерфейсами ряда основных CAD-программ. Геометрическая модель, созданная в программе трехмерного графического моделирования, считывается любой из программ комплекса. Твердотельная геометрическая модель отсека крыла, сохраненная в формате Parasolid, была импортирована в профессиональный сеточный генератор ANSYS ICEM, где методом Octree была построена неструктурированная расчетная сетка, состоящая из 3 млн объемных тетраэдрических элементов (рис. 1). Вблизи поверхности крыла параметры Tetra Size Ratio и Height Ratio были равны 1.2. Максимальный размер элементов на передней кромке крыла составил 1 мм. Для обеспечения нужной точности решения и сходимости расчета элементы расчетной сетки имели Aspect Ratio более 0.3 и Min Angle более 20°. Кроме того, необходимо, чтобы габаритные размеры расчетной области многократно превышали характерный размер исследуемого объекта. В данном случае использовалась прямоугольная расчетная область длиной 35 и высотой 30 м. Размах крыла равен 4 м, а хорда крыла — 3,3 м. Моделирование крыла бесконечного размаха осуществлялось путем задания в препроцессоре CFX-PRE справа и слева от крыла граничных условий типа Symmetry. Типы граничных условий, используемых в данной задаче, показаны на рис. 2.

    В пристеночных областях при построении расчетной сетки для наилучшего моделирования пограничного слоя образованы слои призматических элементов (см. рис. 1). При решении задачи обтекания крыла (где одной из расчетных величин является касательное напряжение) очень важно контролировать величину Y+ . Значение Y+ характеризует относительную высоту первой ячейки пограничного слоя, которая задается в ICEM при построении призматических элементов. После окончания вычислений в среде постпроцессора CFX-POST можно визуализировать Y+ на расчетной модели (рис. 3).

    При использовании методик, основанных на численных решениях уравнений Навье — Стокса, качество полученного результата во многом зависит от выбора модели турбулентности. В программном комплексе ANSYS CFX реализовано достаточно большое число моделей турбулентности. Однако ни одна из них не является универсальной для всех существующих классов задач. Из многообразия моделей турбулентности, используемых при расчетах аэродинамических характеристик, можно выделить известные модели турбулентности k -ε и k -ω. Они являются двупараметрическими моделями турбулентности, которые базируются на рассмотрении кинетической энергии турбулентных пульсаций k . В качестве второго уравнения применяют уравнение либо переноса скорости диссипации турбулентной энергии ε, либо удельной скорости диссипации энергии ω. Модель переноса касательных напряжений SST (двухслойная модель Ментера) использует модель k -ω в пристеночной области и преобразованную модель k -ε вдали от стенки. В новые версии программы CFX включен бета-вариант модели турбулентности Spalart-Allmaras (S-A). Эта модель является однопараметрической, использующей одно дифференциальное уравнение переноса.

    Расчеты с применением программного комплекса ANSYS CFX проводились на сервере с 8-ядерным процессором Intel Xeon 2,83 ГГц и 16 Гбайт ОЗУ. Для получения стационарного решения в зависимости от типа модели турбулентности и угла атаки крыла потребовалось осуществить 40-60 итераций.

    Вычисления проводились при числе Маха 0,2 и числе Рейнольдса 2,2Ѕ106. В препроцессоре ANSYS CFX отсутствует возможность напрямую задавать число Рейнольдса. В связи с этим число Рейнольдса вычислялось в CFX-PRE по величине статического давления, соответствующего определенному коэффициенту кинематической вязкости.

    В результате проведенных расчетов были получены величины сил и моментов, действующих на отсек крыла на заданных углах атаки. Зависимость коэффициента подъемной силы Сy от угла атаки сравнивалась с аналогичными экспериментальными данными, полученными американскими специалистами NASA Венцем и Ситхарамом (SAE Paper 740365). На линейном участке все рассмотренные модели турбулентности продемонстрировали удовлетворительное совпадение расчетных и экспериментальных данных. В зоне Сy max максимальное соответствие с экспериментальными данными показала модель турбулентности SST (рис. 4). С использованием постпроцессора CFX-POST файл с результатами расчета позволяет визуализировать картину обтекания крыла. Линии тока и поле скоростей хорошо иллюстрируют отрывное течение, соответствующее углу атаки, при котором достигается Cy max крыла (рис. 5).

    Таким образом, в результате выполненной работы показано, что при расчетах характеристик обтекания аэродинамических поверхностей использование модели турбулентности SST приводит к более высокому результату.


    Основные данные F16

    Таблица 1

    1. Определение поперечной силы и изгибающего момента в расчётном сечении крыла

    1.1 Определение подъёмной силы крыла

    Величина подъёмной силы крыла определяется формулой:

    где - полётный вес самолёта;

    Эксплуатационная перегрузка;

    Коэффициент безопасности;

    1.2 Эпюра воздушной нагрузки на крыло

    Разбиваем крыло на 10 условных сечений, и измеряем на чертеже (см приложение) длины полученных хорд bi, в дальнейшем подставляем их в формулы (3), (4), (5). Сами же подсчеты произведены в программном приложении Microsoft Excel (таблица 2.).

    Распределение воздушной нагрузки на крыло в первом приближении принимается пропорциональным хордам и вычисляется по формуле:

    где - величина погонной воздушной нагрузки на крыло;

    Величина хорды сечения;

    1.3 Эпюра нагрузки от массы крыла

    Величина погонной нагрузки на крыло от его собственного веса определяется формулой:

    где - вес крыла.

    1.4 Эпюра нагрузки от массы топлива

    Величина погонной нагрузки на крыло от веса топлива определяется формулой:

    где - вес топлива.

    1.5 Суммарная эпюра погонной нагрузки на крыло

    Суммарная эпюра погонной нагрузки получена сложением эпюр погонной нагрузки на крыло от воздушной нагрузки, нагрузок от массы крыла и массы топлива.

    1.6 Эпюра поперечных сил

    Эпюра поперечных сил получена методом графического интегрирования эпюры суммарной погонной нагрузки на крыло, затем к ней прибавлены местные нагрузки от расположенных на крыле агрегатов - в данном случае на крыле нет никаких агрегатов.

    1.7 Эпюра изгибающих моментов

    Эпюра изгибающих моментов получена методом графического интегрирования эпюры поперечных сил.

    Таблица 1.2

    1.8 Величины поперечной силы и изгибающего момента в расчётном сечении крыла

    Величины поперечной силы и изгибающего момента в расчётном сечении крыла - в зоне - сняты с полученных эпюр поперечной силы и изгибающего момента и составляют:

    2. Проектировочный расчёт крыла в зоне

    2.1 Исходные данные

    подъемный крыло сечение обшивка

    Длина хорды в заданном сечении: .

    Величина усилий в заданном сечении: ; .

    Доля изгибающего момента, воспринимаемого лонжеронами: ж=50%.

    Материал силовых элементов: Д16Т, .

    Положения лонжеронов: 1-го; 2-го.

    Редукционные коэффициенты поясов лонжеронов, стрингеров и обшивок:

    при работе на растяжение: ; ; ;

    при работе на сжатие: ; ; .

    Число стрингеров: , шаг h=0,098м.

    2.2 Расчёт основных размеров сечения

    2.3 Замена кессонной части крыла прямоугольным сечением из двух поясов и двух стенок

    2.4 Замена действия действием пары сил и

    2.5 Подбор размеров силовых элементов нижнего пояса

    2.5.1 Определение размеров нижних поясов лонжеронов

    2.5.2 Форма и размеры нижних поясов лонжеронов

    2.5.3 Подбор стрингеров

    Подходит профиль 410018, .

    2.5.4 Определение толщины обшивки

    Подходит обшивка толщиной 0,8 мм.

    2.6 Подбор размеров силовых элементов верхнего пояса

    2.6.1 Определение размеров верхних поясов лонжеронов

    2.6.2 Форма и размеры верхних поясов лонжеронов

    2.6.3 Подбор стрингеров

    Подходит профиль 710022, .

    2.6.4 Определение толщины обшивки

    Подходит обшивка толщиной 1 мм.

    2.7 Толщины стенок лонжеронов

    3. Расчёт размеров соединительных болтов ОЧК крыла с центропланом

    3.1 Расчет болтов для лонжеронов

    Продольная сила в сечении соединения ОЧК с центропланом:

    Так как лонжероны (верхние) воспринимают половину нагрузки, приходящей на верхний пояс, а количество болтов - 4 (см приложение), то диаметр болта определим из условия прочности по нормальным напряжениям.

    Предположим, болты из стали 30ХГСА - допустимое напряжение (запас прочности учтен в п.1.1), где.

    3.2.Расчет болтов для фитинга обшивки

    Так как обшивка воспринимает половину нагрузки, приходящей на верхний пояс, а количество болтов - 7 (см приложение), шаг 90мм, то диаметр болта определим из условия прочности по нормальным напряжениям.

    Подобные документы

      Техническое описание конструкции самолета "Су-26". Определение нагрузок на крыло. Определение крутящего момента и подбор толщины обшивки крыла. Подбор толщины стенок и сечений поясов лонжеронов в растянутой и сжатой зоне крыла, сечений стрингеров.

      курсовая работа , добавлен 14.06.2010

      Исходные геометрические характеристики элементов крыла и схема его нагружения. Задание свойств материалов для каждого элемента конструкции. Построение конечноэлементной модели и расчет ее устойчивости в Buckling Options. Перемещение лонжеронов крыла.

      курсовая работа , добавлен 16.03.2012

      Тактико-технические характеристики самолета Bf 109 G-2. Полетные случаи нагружения крыла при маневре. Построение эпюр внутренних силовых факторов по размаху крыла. Выбор конструктивно-силовой схемы. Подбор сечений элементов продольного набора крыла.

      курсовая работа , добавлен 13.04.2012

      Расчет основных элементов продольного, поперечного набора крыла самолета, элеронов, качалки, узлов крепления, обеспечение их прочности и устойчивости. Точность размеров, силовое взаимодействие с элементами конструкции, жесткие требования к стыковым узлам.

      курсовая работа , добавлен 13.05.2012

      Расчёт аэродинамических характеристик самолёта. Границы допустимых скоростей. Расчет нагрузок на крыло. Значения параметров расчетного сечения крыла, спроектированного по статическим нагрузкам. Зависимость веса самолета от времени в типовом полете.

      дипломная работа , добавлен 15.03.2013

      Технология производства лонжерона крыла самолета РСМ-25 "Robust" из композиционных материалов с подкосом. Определение нагрузок, действующих на крыло, обеспечение прочности и устойчивости конструкции; силовое взаимодействие, требования к стыковым узлам.

      дипломная работа , добавлен 16.03.2012

      Использование композиционных материалов в конструкциях летательных аппаратов. Расчет элерона ЛА в среде COSMOS/M. Построение конечно-элементной модели для поясов и стенок лонжеронов, нервюр, стрингеров и обшивки в напряженно-деформированном состоянии.

      курсовая работа , добавлен 29.06.2012

      Выбор прототипа самолета по его характеристикам, являющимися исходными данными к проекту. Назначение эксплуатационной перегрузки и коэффициента безопасности. Определение нагрузок, действующих на крыло и выбор типа конструктивно-силовой схемы крыла.

      методичка , добавлен 29.01.2010

      Нормирование нагрузок на крыло. Проектирование полок и стенки лонжерона. Расчет геометрических параметров сечения лонжерона. Проектирование узла крепления подкоса к лонжерону. Технологический процесс формообразования и контроль качества конструкции.

      дипломная работа , добавлен 27.04.2012

      Расчет заклепок, соединяющих пояс и стенку лонжерона, нижней и верхней проушины, стойки и опасного сечения D-D вилки. Определение суммарной силы, действующей на болт. Нахождение координаты центра масс. Связь стыка с поясом и стенкой бортовой нервюры.

    Крыло конечного размаха вследствие скоса потока обладает дополнительным, по сравнению с профилем, индуктивным сопротивлением. Исходя из зависимости (8.13), получим формулу для определения коэффициента подъемной силы крыла с учетом скоса потока. Так как , то , или .

    Отсюда производная равна

    Наглядно видно, что величина в силу конечной величины размаха крыла становится меньше, чем для профиля (крыла бесконечного размаха). С уменьшением коэффициент подъемной силы крыла уменьшается (рис. 8.24). При прочих равных условиях для получения подъемной силы одной и той же величины крыло конечного размаха должно иметь больший угол атаки, чем крыло бесконечного размаха.

    Дополнительное индуктивное сопротивление приводит к изменению формы поляры крыла, в сравнении с полярой профиля, и ее смещению в сторону увеличения сопротивления. Графически коэффициент индуктивного сопротивления представляет в координатах параболу индуктивного сопротивления (рис. 8.25). В конечном итоге, это приводит к уменьшению качества крыла по сравнению с качеством профиля этого крыла.

    Формула (8.14) для получена применительно к крылу, форма в плане которого обеспечивает равномерное распределение индуктивной скорости и угла скоса потока по размаху крыла. Этим требованиям отвечает крыло эллиптической формы в плане (изменение хорды профиля происходит по зависимости , где – корневая хорда), обеспечивающее эллиптическое распределение циркуляции скорости по размаху и наименьшее индуктивное сопротивление. Применительно к крыльям произвольной формы в плане для определения можно пользоваться соотношением, которое учитывает влияние формы крыла в плане:

    При малых углах атаки вся поверхность крыла обтекается без отрыва. При умеренных и больших углах атаки зависимости и становятся нелинейными из-за отрыва потока на верхней поверхности крыла, возникающего вблизи кормовой оконечности крыла. Место отрыва потока с ростом перемещается против потока к передней оконечности. При углах атаки больших наблюдается общий отрыв потока с поверхности крыла, что приводит к резкому падению подъемной силы крыла.

    Отрыв потока у стреловидных крыльев с острыми кромками происходит на боковых и передних кромках уже при умеренных углах атаки. Вихри, образовавшиеся в результате отрыва потока с передних кромок, создают на верхней поверхности дополнительное разрежение, которое вызывает перераспределение аэродинамической нагрузки по крылу. В результате этого подъемная сила крыла возрастает, а зависимости и становятся нелинейными (рис. 8.26).

    Приближенно определить коэффициент подъемной силы с учетом дополнительной силы за счет отрыва потока на передней кромке можно по следующей формуле: .


    Коэффициент А зависит от угла стреловидности передней кромки , удлинения и сужения крыла.

    Экспериментальные данные показали, что для крыльев с различными геометрическими параметрами, но одинаковыми значениями коэффициент А практически одинаков.


    С увеличением значения , т. е. с ростом или уменьшением нелинейная составляющая коэффициента подъемной силы уменьшается.

    Таким образом, были рассмотрены основные характеристики элементов летательных аппаратов, создающих подъемную силу, проведены расчеты значения коэффициента сил для профилей и крыльев в широком диапазоне скоростей.

    Контрольные вопросы и задания

    1. Дайте определение аэродинамического качества К. Аэродинамическое качество какого объекта больше: изолированного профиля или крыла конечного размаха и почему?

    2. Несущее крыло располагается на некотором расстоянии от носовой оконечности самолета. Чем определяется его местоположение? Его размах?

    3. Какой угол атаки профиля (крыла) называют критическим и почему?

    4. Из каких составляющих складывается лобовое сопротивление профиля при закритических скоростях полета?

    5. Исходя из каких соображений для расчета удлинения крыла любой формы в плане предложена формула , где l – размах крыла, а S – его площадь в плане?

    6. Что является причиной возникновения индуктивного сопротивления крыла конечного размаха? Что происходит с потоком газа около крыла конечного размаха? Для какого крыла характерно равномерное распределение индуктивной скорости и угла скоса потока по его размаху?

    7. У самолета с полетной массой 60 т, совершающего полет с постоянной скоростью на высоте h равной 10 км, подъемную силу создает крыло, размах которого l равен 35 м, а удлинение равно 6. Рассчитайте скорость полета самолета и силу тяги, развиваемую силовой установкой самолета, если коэффициент подъемной силы крыла » 1, а коэффициент силы лобового сопротивления самолета равен 0,2.

    8. На самолетах применяются различного рода устройства, увеличивающие несущую способность крыла при одном и том же взлетном весе аппарата и снижающие его минимальную скорость полета. Такие устройства основаны либо на изменении кривизны средней линии профиля, либо на изменении площади несущей поверхности крыла, либо сдуве (отсосе) пограничного слоя с верхней поверхности крыла или его закрылка. На основе анализа зависимости и физической картины течения на верхней поверхности крыла покажите, в чем причина увеличения несущей способности крыла (т. е. ) при сдуве (отсосе) пограничного слоя.

    9. К какому крылу имеет отношение такое понятие, как докритическая (критическая, закритическая) передняя (задняя) кромка?

    10. Каким образом можно свести к нулю влияние концов крыла на его аэродинамические характеристики при сверхзвуковых скоростях полета?

    11. Почему отрыв потока на верхней поверхности обычного крыла уменьшает создаваемую им подъемную силу, а у стреловидных крыльев с острой передней кромкой – увеличивает ее?

    Загрузка...