last-tochka.ru

Сплав алюминия и железа 5 бук. Сплавы алюминия и их применение. Применение алюминиевых сплавов

На сегодняшний день практическое применение нашли почти все известные человеку металлы и их сплавы. У каждого из них есть свои специфические особенности, которые и определяют сферу их использования в тех или иных отраслях промышленности. Наибольшее распространение получили железо и всевозможные соединения на его основе, а также алюминий и его сплавы. Это можно объяснить, прежде всего, большими природными запасами, а также прекрасными химическими, физическими и механическими характеристиками.

Немного истории

Согласно древней легенде, описанной в трактате «Естественная история» Гая Плиния Старшего, составленной примерно в 77 году н.э., однажды к императору Рима Тиберию подошел незнакомый мастер и сделал ему подарок в виде чаши из серебристого и очень легкого металла. Когда Тиберий спросил его, из чего он ее сделал, тот ответил, что из глины. Удивившись, император приказал умертвить невинного ремесленника и уничтожить его мастерскую, чтобы это изобретение не привело к обесцениванию металлов римской казны. Жаль, что он в то время не смог оценить все перспективы открытия, ведь алюминий и его сплавы в будущем совершили прямо-таки настоящий прорыв.

Почему алюминий и его сплавы так популярны?

Содержание алюминия в земной коре составляет примерно 8,8%, и потому он лидирует в перечне наиболее распространенных металлов. В число его достоинств входит малая плотность (2,7 г/см3), прекрасная коррозийная стойкость, технологичность, хорошая электро- и теплопроводность, довольно высокие прочностные характеристики. Алюминий и его сплавы широко используются в авиации, судостроении, железнодорожном транспорте, автомобилестроении, строительстве, химической и и т.д. характеризуются высокой скоростью обработки. Все это дает отличную возможность применять их почти в любом виде производства.

Основные сплавы на основе алюминия

Соединяя алюминий с легирующими добавками, можно добиться большей прочности и улучшить прочие свойства этого металла. В качестве добавок чаще всего медь, марганец, цинк и магний. Рассмотрим основные сплавы.

или просто дюраль)

Название этого соединения произошло от слова Дюрен - именно так назывался немецкий город, в котором в 1911г. начали производить этот сплав в промышленных масштабах. Получают его добавлением к алюминию меди (2,2 - 5,2 %), магния (0,2 - 2,7%) и марганца (0,2 - 0,1%). После термообработки металл становится очень прочным (статическая прочность достигает 450-500 МПа). Для того чтобы повысить антикоррозийную стойкость, его нередко плакируют алюминием. Используют в качестве в транспортном и авиационном машиностроении.

Магналии

Это различные сплавы алюминия с магнием и прочими элементами (содержание магния - 1-13%). Для них характерна высокая пластичность, хорошая свариваемость и коррозийная стойкость. Используются для изготовления фасонных отливок, проволоки, листов, заклепок и т.д.

Силумин

Это соединение получают, соединяя алюминий с кремнием (содержание кремния - 4-13%). Порой в него добавляют и другие добавки: Be, Ti, Zn, Mg, Mn, Cu. Данный сплав применяется для производства деталей сложной конструкции, в основном в авиа- и автостроении.

Алюминий и его сплавы еще долго будут служить на благо человечества. Доказательство тому новое изобретение - пеноалюминий или, как его еще называют, «металлический поролон». Многие эксперты считают, что у пористого алюминия есть отличные перспективы.

Алюминий


Вследствие малого удельного веса (2,70) алюминий и его сплавы являются исключительно ценными конструкционными материалами, особенно в самолетостроении. Высокая пластичность алюминия дает возможность обрабатывать его давлением и штамповкой в холодном и горячем состоянии.
Сравнительно малое удельное электросопротивление позволяет применять алюминий в электротехнической промышленности в качестве проводов и других изделий. Высокая коррозионная стойкость алюминия, объясняемая характерным свойством его образовывать на поверхности окисные пленки, позволяет применять алюминий как плакировочный материал.
Благодаря этим ценным свойствам алюминий и его сплавы получили чрезвычайно широкое применение во всех отраслях промышленности и в быту.
В России выпускается технический алюминий девяти марок, химический состав которых и примерное назначение приведены в табл. 16.

Примеси оказывают сильное влияние на электрические, технологические и коррозионные свойства алюминия.
Основные примеси в техническом алюминии - железо и кремний, попадающие в металл при его получении.
Уже незначительные количества таких примесей, как железо, марганец, медь, цинк, магний и других, резко снижают электропроводность (рис. 1) и теплопроводность технического алюминия.
Железо почти не растворяется в алюминии: при температуре эвтектики (655°) растворимость железа составляет 0,052%, при понижении температуры растворимость резко падает (рис. 2). Железо в алюминии присутствует в виде самостоятельной фазы AlsFe.

Присутствие нерастворяющегося в алюминии железа снижает антикоррозионную устойчивость и значительно понижает электропроводность и пластичность (обрабатываемость), хотя несколько и повышаем прочность алюминия.
При одновременном присутствии кремния и железа в алюминии образуется новая фаза. В техническом алюминии соотношение кремния и железа таково, что образуется новое тройное соединение.
Вредное действие железа во многих сплавах может быть ослаблено, если в алюминий добавить марганец или хром, которые способствуют кристаллизации скелетообразной или равноосной структуры.
Кремний растворяется в алюминии при температуре эвтектики (577°) до 1,65%. С понижением температуры растворимость кремния падает и при комнатной температуре в растворе удерживается несколько сотых долей процента кремния (рис. 3). Изменение растворимости кремния в алюминии с понижением температуры вызывает процессы упрочнения, но они настолько слабы, что практического значения не имеют.
Влияние кремния на механические свойства алюминия аналогично влиянию железа.
Примеси кальция, натрия и других элементов, присутствующих в техническом алюминии в ничтожных количествах, практически не оказывают влияния на свойства алюминия.


Кислород энергично реагирует с алюминием и образует тугоплавкий окисел Аl2О3, присутствие которого в алюминии сильно снижает механические свойства и ухудшает обработку металла давлением.
Азот, окись углерода, углекислый газ и сернистый газ при высоких температурах вступают в реакцию с алюминием и образуют тугоплавкие соединения.
Растворимость этих газов в алюминии при температурах процесса плавки алюминия невелика, но эти газы вредны потому, что металл загрязняется окислами, сульфидами и карбидами, которые способствуют повышению растворимости газов в расплавленном алюминии.
При высоких температурах в алюминии растворяется относительно большое количество водорода (при 300° 0,001 см3 в 100 г алюминия, при 500° - 0,0125 см3 в 100 г, а при 850° - 2,15 см3 в 100 г). При остывании алюминия часть водорода удерживается в нем, отчего изделия из такого металла получаются пористыми. Поэтому присутствие водорода или водяного пара в атмосфере печи, в которой плавится алюминий, крайне нежелательно.
Присутствие в алюминии легирующих добавок резко изменяет растворимость в нем водорода. Медь, кремний и олово понижают растворимость водорода в алюминии, а марганец, никель, магний, железо, хром, церий, торий и титан повышают ее. В присутствии 2,8% марганца при 600° или 6% магния при 500° алюминий способен поглощать водород.
Механические свойства технического алюминия зависят от степени его деформации и температуры отжига.
Так, предел прочности при растяжении мягкого алюминия равен 7-10 кг/мм2, а деформированного 15-20 кг/мм2, относительное удлинение ответственно составляет 30-35 и 4-6%.
На рис. 4 и 5 приведена зависимость предела прочности и удлинения алюминия марок A1 и А2 от степени деформации и температуры отжига.

Основными легирующими добавками в деформируемых и литейных алюминиевых сплавах служат медь, магний, марганец, кремний, цинк, титан и в некоторых случаях олово, никель и др.
Добавки, вводимыe в алюминий при производстве сплавов, значительно повышают прочность металла, но понижают его пластичность, электро- и теплопроводность и ослабляют защитные действия пленки окиси алюминия, так как новые образующиеся фазы нарушают непрерывность слоя окиси алюминия.
Медь с алюминием образует твердый раствор. При температуре эвтектики (548°) растворимость меди составляет около 5,7%, при понижении температуры растворимость уменьшается, достигая при 200° около 0,5%.
В состоянии твердого раствора сплав алюминия с медью хорошо переносит обработку давлением. При медленном охлаждении из этих сплавов начинает выделяться химическое соединение СuAl2. Быстрое охлаждение, т. е. закалка, позволяет предупредить распад твердого раствора и получить неустойчивый при комнатной температуре раствор. В процессе распада твердого раствора происходит упрочнение сплавов, т. е. повышается их твердость и предел прочности.
Процесс упрочнения начинается после закалки при длительной выдержке при комнатной температуре, но более сильное упрочнение получается при искусственном старении (выдержке сплавов при 100-150°). Например. сплав алюминия с 4% меди после закалки и отпуска обладает пределом прочности 35- 37 кг/мм2 вместо 27 кг/мм2 в свежезакаленном состоянии и 13 кг/мм2 в отожженном состоянии.
В настоящее время двойные сплавы алюминия с медью применяются редко; наибольшим распространением пользуются сплавы, содержащие, кроме меди, магний, марганец, цинк и другие элементы.
Магний, как и медь, образует с алюминием область твердого раствора, которая уменьшается с понижением температуры вследствие уменьшения растворимости магния в алюминии.
При 451° растворимость магния в алюминии составляет 14,9%, при 150°-2,95% (рис. 6).

Уменьшение растворимости магния в алюминии с понижением температуры позволяет применить закалку и последующий упрочняющий отпуск; в сплавах Al-Mg явление упрочнения выражено не так резко, как в сплавах Al-Cu.
Значительный эффект упрочнения дают алюминиевые сплавы при добавке соединения Mg2Si. Например, предел прочности термически обработанного сплава с содержанием 1,85% Mg2Si возрастает больше, чем в три раза.
Цинк с алюминием образует большую область твердого раствора β, которая с понижением температуры резко сужается. Однако применение цинка в качестве упрочнителя алюминиевых сплавов не нашло практического применения. Большой эффект упрочнения дают алюминиевые сплавы при добавке соединения MgZn2. Эти добавки позволят получить сплавы после термической обработки с пределом прочности до 60 кг/мм2.
Марганец в процессе старения сплавов типа дуралюминов не участвует, но повышает их прочность и коррозионную стойкость. В присутствии марганца в структуре сплава появляется марганцевая составляющая. В сплавах, которые содержат магний и кремний, марганец дает эффект упрочнения, значительно превосходящий эффект упрочнения от меди.
Термической обработкой многокомпонентных алюминиевых сплавав удается получать сплавы с высоким пределом прочности (свыше 60 кг/мм2) при достаточно сильном удлинении и другими высокими механическими и физическими свойствами.

Алюминиевые сплавы


Промышленные алюминиевые сплавы делятся на деформируемые и литейные.
Деформируемые сплавы. В качестве деформируемого упрочняемого старением сплава наибольшее распространение получил дуралюмин, открытый в 1909 г., состав которого с тех пор подвергся лишь незначительному изменению.
Дуралюмин является сплавом по крайней мере из пяти компонентов, причем медь, магний и марганец вводятся в него в качестве добавок, а кремний и железо (примерно по 0,5%) являются обычными примесями, попадающими в сплав с техническим алюминием, уже содержащим эти примеси.
В табл. 17 приводятся некоторые данные о химическом составе и механических свойствах деформируемых алюминиевых сплавов.

Как следует из данных табл. 17, с повышением процентного содержания легирующих добавок повышается предел прочности и падает пластичность сплава.
Дуралюмины идут в основном для изготовления листов, профилей, проволоки, прутков, труб и заклепок. Листы выпускаются как неплакированные, так и плакированные чистым алюминием.
Большое распространение получили также сплавы на основе Al-Mg-Si, используемые для производства поковок и штамповок - группа сплавов, именуемая в ГОСТах сплавами марок AK. В этих сплавах содержится повышенное по сравнению с дуралюмином количество кремния (до 1,2%). Кроме того, в этих сплавах некоторых марок (АК2 и АК4) марганец заменен никелем.
Из сплавов высокой прочности можно привести сплав АК8, содержащий 3,9-4,8% меди, 0,4-0,8% магния, 0,4-1,0% марганца и 0.6- 1,2% кремния. Этот сплав обладает высоким пределом прочности (до 50 кг/мм2), но склонность сплава к интеркристаллитной коррозии ограничивает области его применения.
По свойствам при комнатных температурах некоторые сплавы типа AK (например, АК2) близки к дуралюмину, но превосходят его по стойкости при высоких температурах.
В последние годы начал внедряться сплав В95, подвергающийся искусственному старению и обладающий пределом прочности свыше 65 кг/мм2, твердостью 190 кг/мм2 и относительным удлинением около 7%.
Литейные сплавы. Среди литейных алюминиевых сплавов наиболее распространены силумины - сплавы с большим содержанием кремния.
Кроме силуминов применяют, правда значительно реже, сплавы алюминия с медью и магнием.
Литейные алюминиевые сплавы легированы большим количеством добавок, чем деформируемые сплавы.
Содержание добавок в литейных сплавах таково, что в литом сплаве образуется эвтектика, которая, как правило, повышает жидкотекучесть, плотность отливки и увеличивает сопротивление сплава усадочным напряжениям.
Сплавы с большим количеством кремния обычно имеют игольчатую эвтектику, но при добавке в жидкий сплав незначительного количества модификатора (металлический натрий, смесь фтористого натрия и хлористого натрия) значительно улучшается структура сплава, так как эвтектика становится мелкозернистой.
Силумины хорошо поддаются сварке и почти не дают трещин от усадочных напряжений, что объясняется малым интервалом кристаллизации. Большой недостаток силуминов - склонность к образованию окисных пленок (отчего повышается брак отливок), а также невысокая механическая прочность и плохая обрабатываемость резанием. Как и многие литейные сплавы, силумин очень чувствителен к загрязнению железом: уже незначительное увеличение содержания железа в силумине (на 0,1-0.2%) приводит к резкому снижению относительного удлинения (в 2-3 раза).
В табл. 18 приведен cocтав и механические свойства некоторых литейных сплавов.
Как следует из приведенной таблицы, механические свойства силуминов существенно ниже механических свойств деформируемых сплавов, что является следствием более грубой структуры силуминов.
Алюминийурановые сплавы сравнительно дешевы, прочны, хорошо поддаются обработке, а плакированные алюминием - очень хорошо противостоят коррозии в воде.

30.05.2019

Основными требованиями клиента в ходе строительства разнообразных строений называют обеспечение энергоэффективности, значительную скорость выполнения работ,...

29.05.2019

Предлагаем обзор свойств и характеристик популярных моделей профилированных геомембран, представленных в компании ГЕОТЕХ. В обзоре модификации мембран Тефонд, Изостуд,...

29.05.2019

Судебные инстанции Замбии озвучили собственный вердикт по поводу ликвидации самой крупной на территории государства компании по добыче меди Konkola Copper Mines,...

29.05.2019

На сегодняшний день демонтаж металлических конструкций считается весьма замысловатым в техническом плане типом работ. При этом отыскать оснащение и устройства для...

28.05.2019

Микроклимат в машине считается одним из самых важных факторов удобства. Вряд ли вас будет устраивать тот факт, что температурный режим на улице будет точно таким же, как...

28.05.2019

Корпорация Vale из Бразилии, занимающаяся добычей железной руды, а также фирма China Communications Construction Co из Китайской Народной Республики заключили договор по...

Сплав на основе железа и алюминия содержит следующие компоненты, ат.%: алюминий 12-18; хром 0,1-10; ниобий 0,1-2,0; кремний 0,1-2,0; бор 0,1-5; титан 0,01-2,0, а также мг/кг: углерод 100-500; цирконий 50-200; железо - остальное. Техническим эффектом изобретения является повышение механических свойств при температурах свыше 700 o С и значительное улучшение свариваемости. 1 з.п.ф-лы, 3 табл.,1 ил.

Сплавы железа с алюминием могут применяться в термически сильно нагруженных и подверженных окисляющим и/или корродирующим воздействиям деталях термических машин. Там во все возрастающей мере они должны заменить специальные стали, а также суперсплавы на основе никеля. В литературной статье "Acceptable Aluminium Additions for Minimal Environmental Effect in Iron - Aluminium Alloys", Mat. Res. Soc. Symp. Proc. Vol. 288, s. 971-976, В.К. Сикка и другие описывают сплав железа с алюминием с содержанием около 16 вес.% алюминия и около 5 вес.% хрома, который при необходимости содержит около 0,1 вес.% углерода, и/или циркония, и/или 1 вес.% молибдена. Известный сплав имеет при комнатной температуре по сравнению со сплавами железа с алюминием с содержанием алюминия от 22 до 28 вес.% значительно более высокую пластичность. При температуре 700 o C предел прочности при растяжении этого сплава с механическим напряжением около 100 МПа относительно невелик. Поэтому изготовленные из сплава детали не следовало бы применять при температурах выше 700 o C. В основе изобретения, как это указано в пункте 1 формулы изобретения, лежит задача разработки сплава железа с алюминием, который отличается хорошими механическими свойствами при температурах свыше 700 o C. Задачей изобретения является также надлежащее применение этого сплава. Сплав в соответствии с изобретением даже при температурах от 700 до 800 o C еще обладает механическими свойствами, которые позволяют использовать его в механически незначительно нагруженных деталях. Наряду с этим сплав в соответствии с изобретением отличается отличной стойкостью при тепловых ударах и поэтому с особым преимуществом может использоваться в подверженных нагрузкам с изменением температуры деталях тепловых установок, как, в частности, в качестве корпуса или части корпуса газовой турбины или турбонагнетателя или в качестве соплового кольца, в частности, для турбонагнетателя. Помимо этого сплав можно получать с очень небольшими затратами с помощью литья или литья и прокатки. Другое преимущество сплава в соответствии с изобретением заключается в том, что его компоненты содержат исключительно металлы, которые можно приобрести сравнительно недорого и независимо от стратегического и политического влияния. На чертеже представлена диаграмма, на которой показан предел прочности при растяжении UTS (МПа) сплава I в соответствии с изобретением и сплава II в соответствии с уровнем техники в зависимости от температуры T (o C). В табл. 1 приведен состав сплава I (в соответствии с предпочтительным примером выполнения изобретения). В табл. 2 приведен состав сплава II (в соответствии с уровнем техники). Сплав I выплавляется в электродуговой печи в присутствии аргона в качестве защитного газа. В качестве исходных материалов служили отельные элементы со степенью чистоты выше 99%. Расплав отливался в виде отливки диаметром около 100 мм и высотой около 100 мм. Отливка вновь расплавлялась в вакууме и также в вакууме отливалась в форме цилиндрических стержней диаметром около 12 мм и длиной около 70 мм, в форме каротелей с минимальным диаметром около 10 мм, с максимальным диаметром около 16 мм и длиной около 65 мм или в форме дискообразных пластин диаметром 80 мм, толщиной до 14 мм и радиусом у кромки пластины около 1 мм. В ходе последующей технологической операции в дискообразных пластинах вдоль их оси выполнялось соответственно отверстие диаметром 19,5 мм. Из цилиндрических стержней и каротелей были изготовлены испытуемые образцы для испытаний на растяжение. Пластины предназначены для определения стойкости при тепловых ударах. В соответствии с выбранными размерами испытуемые образцы для определения механической прочности и стойкости при тепловых ударах были изготовлены из имеющегося в продаже и используемого в большом объеме в качестве материала для корпуса газовых турбин сплава II и родственного сплава с меньшим содержанием на 25% кремния и с меньшим содержанием на 40% молибдена. Испытания на растяжение проводились в зависимости от температуры. В результате для сплава I в соответствии с изобретением был получен предел прочности при растяжении, который при температуре 800 o C с механическим напряжением около 100 МПа был значительно выше, чем предел прочности при растяжении сплава II в соответствии с уровнем техники. Соответствующее относится также и к не показанному на диаграмме сплаву в соответствии с уровнем техники с уменьшенным содержанием кремния и молибдена. С помощью дискообразных пластин определялась стойкость от тепловых ударов по Гленни. По две пластины каждого сплава циклически нагревались соответственно в псевдоожиженном слое до температуры 650 o C и затем охлаждались с помощью сжатого воздуха до температуры 200 o C. После определенного количества таких циклов нагревания и охлаждения затем было подсчитано количество возможно образующихся на кромке пластин трещин длиной более 2 мм. В табл. 3 указано суммированное количество появившихся на обеих пластинах трещин в зависимости от количества циклов для сплава I в соответствии с изобретением, а также для обоих сплавов в соответствии с уровнем техники. Из этого видно, что при использовании в качестве материала для корпусов газовых турбин сплавов в соответствии с уровнем техники уже после 240 циклов появляются нежелательные трещины, в то время как сплав в соответствии с изобретением даже после 740 циклов еще не имеет трещин. Сплав в соответствии с изобретением превосходит используемые сплавы в соответствии с уровнем техники не только относительно механической прочности при температурах выше 700 o C, но и с точки зрения стойкости при тепловых ударах. Поэтому сплав в соответствии с изобретением может использоваться с большим преимуществом в качестве материала для деталей тепловых установок, которые при температурах от 700 до 800 o C обладают еще сравнительно высокой механической прочностью и которые, как корпус газовых турбин, подвержены воздействию нагрузок при изменении температур. Изготовленный в соответствии с изобретением сплав имеет хорошие прочностные свойства при температурах от 700 до 800 o C и большую стойкость при тепловых ударах тогда, когда содержание алюминия составляет минимум 12 и максимум 18 вес. %. Если содержание алюминия уменьшается ниже 12 вес.%, то ухудшается неокисляемость, коррозинностойкость и стойкость при тепловых ударах сплава в соответствии с изобретением. Если содержание алюминия более 18 вес.%, то сплав приобретает все более хрупкие свойства. Благодаря добавлению легирующей присадки хрома от 0,1 до 10 вес.% хрома повышается стойкость при тепловых ударах, улучшается неокисляемость и коррозинностойкость. Одновременно с помощью хрома улучшается пластичность. Однако добавление хрома более 10 вес.% вновь ухудшает механические свойства. Путем добавления легирующей присадки ниобия от 0,1 до 2 вес.% повышается твердость и прочность сплава в соответствии с изобретением. Наряду с ниобием или вместо него в качестве легирующей присадки можно добавлять также от 0,1 до 2 вес.% вольфрама и/или тантала. Содержание кремния от 0,1 до 2 вес.% кремния улучшает литейные свойства сплава в соответствии с изобретением и благоприятно сказывается на неокисляемости и коррозионностойкости. Кроме того, кремний повышает твердость. Благодаря добавлению легирующих присадок бора от 0,1 до 5 вес.% и титана от 0,01 до 2 вес.% значительно повышается стойкость при тепловых ударах, неокисляемость и коррозионностойкость сплава в соответствии с изобретением. Это обусловлено прежде всего тем, что в этом случае в сплаве образуется тонкодисперсный диборид титана TiB 2 . При высоких температурах и при вызывающих окисление и/или коррозию условиях на поверхности сплава в соответствии с изобретением образуется содержащий в основном окислы алюминия защитный слой. Фаза диборида титана способствует значительной стабилизации этого защитного слоя, так как фаза диборида титана в виде игольчатых кристаллитов проникает из сплава в защитный слой и в результате этого способствует особенно хорошему сцеплению защитного слоя с находящимся под ним сплавом. Содержание бора не должно составлять более 5 вес.%, а содержание титана должно быть не более 2 вес. %, так как в ином случае образуется слишком много диборида титана и сплав приобретает хрупкие свойства. Если содержание бора менее 0,1 вес.% и титана менее 0,01 вес.%, то значительно ухудшаются стойкость при тепловых ударах, неокисляемость и коррозионностойкость сплава в соответствии с изобретением. Незначительное повышение механической прочности и одновременно значительное улучшение свариваемости достигается благодаря добавлению легирующих присадок: от 100 до 500 мг/кг углерода и от 50 до 200 мг/кг циркония. Особенно хорошие показатели механической прочности и стойкости при тепловых ударах имеют сплавы следующего состава: от 14 до 16 вес.% алюминия, от 0,5 до 1,5 вес.% ниобия, от 4 до 6 вес.% хрома, от 0,5 до 1,5 вес.% кремния, от 3 до 4 вес.% бора, от 1 до 2 вес.% титана, около 300 мг/кг углерода, около 100 мг/кг циркония, остальное - железо.

Формула изобретения

1. Сплав на основе железа и алюминия, содержащий хром, ниобий, кремний и бор, отличающийся тем, что он дополнительно содержит титан, углерод и цирконий при следующем соотношении компонентов, ат.%: Алюминий - 12 - 18 Хром - 0,1 - 10,0 Ниобий - 0,1 - 2,0 Кремний - 0,1 - 2,0 Бор - 0,1 - 5,0 Титан - 0,01 - 2,0 а также, мг/кг: Углерод - 100 - 500
Цирконий - 50 - 200
Железо - Остальное
2. Сплав по п.1, отличающийся тем, что он содержит компоненты при следующем соотношении, ат.%:
Алюминий - 14 - 16
Хром - 4 - 6
Ниобий - 0,5 - 1,5
Кремний - 0,5 - 1,5
Бор - 3 - 4
Титан - 1 - 2
а также, мг/кг:
Углерод - Около 300
Цирконий - Около 100
Железо - Остальноел

Изучение сплава железа с алюминием было начато после первой мировой войны. Работы, проведенные в союзе, Германии, Англии и в других странах, показали, что алюминий значительно увеличивает жаростойкость чугуна. При исследованиях также было найдено, что эти сплавы имеют высокую цементацию, окалиностойкость и хорошую стойкость в окисляющей среде.

Скорость окалинообразования при высоких температурах зависит от свойств образующейся на поверхности металла окисной пленки. Чем она плотнее и однороднее, тем лучше защищает поверхность от окисления. Окислы, входящие в состав пленки, не должны возгоняться, должны быть тугоплавкими и не должны образовывать легкоплавкие эвтектики. Пленка должна иметь низкую ионную проводимость. Жаростойким сплавом принято считать такой, у которого потеря с окалиной не превышает 0,0002 - 0,0004 г/см2/час. Это условие относится к сплавам железа с хромом и кремнием и остается в силе для сплавов железа с алюминием.

Можно сказать, что до настоящего времени наиболее распространенным сплавом для отливок, подвергающихся тепловому и химическому воздействию, был ферхромит и подобные ему сплавы железа с хромом . Сплавы железа с кремнием чаще применяются как коррозионностойкие материалы. Несмотря на то, что сплавы железа с алюминием исследовались в течение ряда лет, они не нашли широкого применения. Большинство исследований этих сплавов ограничилось лишь лабораторными определениями механических, физических и других свойств. При получении качественных отливок из этих сплавов, встретились затруднения, связанные с большой газо-насыщенностью металла, образованием окисных пленок в толще металла, угаром алюминия во время плавки, разрушением отливок при нормальной температуре и т. д., что заставило исследователей не только прекратить работы, но и прийти к заключению, что такие сплавы не могут быть применены на практике. Наиболее полно были исследованы сплавы, содержащие 16 - 20% А1 и 3% C. Из литературы известно, что такие сплавы, называемые «чугаль» (чугун + алюминий), начали выплавлять в бывшем Союзе.

Можно сказать, что, несмотря на исключительные свойства сплава железа с алюминием , он нигде (поскольку об этом можно судить по литературным данным) не производился в больших количествах. Однако как сплавы железа с алюминием, так и пирофераль нуждались в дальнейшей разработке технологии производства отливок, которая могла бы обеспечить высокое качество изделий при минимальных производственных затратах. По просьбе изобретателей один из авторов, З. Эмингер, со своим рабочим коллективом разработал технологию выплавки пирофераля, которая позволяет наладить производство отливок в широком масштабе. Коллективом были получены новые данные об этом сплаве, на основе которых и была разработана технология его производства.

Загрузка...