last-tochka.ru

Назначение систем поддержки принятия решений. Системы поддержки принятия решений (сппр) Известные сппр

Сергей КОРНЕЕВ (PMCG, директор)

Ч то во все большей и большей степени определяет деятельность человека, как в быту, так и в производстве? Конечно же, это стандартизация. Речь может идти о стандартизации речи, стандартизации одежды и т.д. Но автор, в силу своей профессиональной принадлежности, предлагает рассмотреть развитие стандартизации в области систем поддержки принятия решений (Decision Support Systems - DSS).

Почему такое внимание именно стандартизации? Да прежде всего потому, что нас интересует коммерческое применение прикладных систем, а масштабный бизнес в данной области, как и в любой другой, лежит в области стандартизации. Пылесос, автомобиль и т.п. стали массовыми товарами только после унификации требований к ним, пусть даже с учетом некоторых функциональных групп в рамках единого продуктового типа, скажем: семейный автомобиль, спортивный, внедорожник и т.д. Когда мы видим или слышим эти слова, то у нас возникают совершенно определенные ассоциации, и мы редко бываем обмануты в своих ожиданиях.

Термины и определения

Когда современный специалист, не только в области информационных технологий, но и просто эрудированный производственник, слышит аббревиатуру ERP, то можно в большинстве случаев ожидать вполне адекватного представления, о чем идет речь. Хотя еще лет десять назад это было не так. До сих пор это «не так» и с системами поддержки принятия решений.

С одной стороны, ERP, GIS и многие другие прикладные программные средства можно отнести по функциональному назначению к системам поддержки принятия решений - как минимум на 50% они для этого и создавались. Однако когда мы имеем дело с прикладным программированием, мы вынуждены следовать сложившимся стандартам, которые приписывают любому понятию в данной области определенный смысл. Некоторые отклонения, конечно, возможны, но только вокруг некоторой базовой спецификации.

Так же что такое DSS-система?

Можем найти следующее ее определение:

Decision Support Systems (DSS) является классом компьютеризированных информационных систем, которые поддерживают деятельность по принятию решений.

Это определение, по мнению автора, мало что проясняет и абсолютно не дает возможности идентификации в широком перечне классов информационных систем. Иногда в данного типа определениях присутствует фразы: «система должна облегчать принятие решений», «…анализировать данные и представлять их в удобной для принятия решений форме» и т.п.

Дэниель Пауэр (Daniel Power) в 2002 году идентифицировал пять типов DSS-систем как систем, оперирующих связями, данными, документами, знаниями и моделями.

Вот его определение:

DSS-система - это интерактивная компьютерная система, предназначенная для помощи лицу, принимающему решения, в использовании связей, данных, документов, знаний и моделей для идентификации и решения проблем и формирования решений.

Это уже, по крайней мере, конструктивно, хотя под данное определение попадают опять очень многие классы систем: ERP, GIS, DocFlow, Business Modeller, SCADA/DCE, Project Management и др.

А вот еще одно определение (Bonczek, Holsapple & Whinston, 1981):

DSS-система должна помогать лицу, принимающему решение, в решении непрограммируемых, неструктурированных (или полуструктурированных) проблем; DSS-система должна предлагать возможности формирования интерактивных запросов в естественном языке, близком к предметному и легко изучаемому.

Это определение, безусловно, сужает область идентификации.

И наконец, еще одно:

DSS-система помогает менеджеру или лицу, принимающему решение, использовать и манипулировать данными, использовать проверки и эвристики, а также строить и использовать математические модели.

В некоторых определениях упоминается возможность: включения в состав DSS-системы функциональных возможностей искусственного интеллекта.

Ну, в искусственный интеллект, наверное, так сразу лучше не лезть - как минимум, интуитивно понятного языка, близкого к естественному, там нет или нет в большинстве задач.

Упоминаются также как необходимые возможности графического представления данных.

Мало чему помогает в смысле той же идентификации.

Существует связное понятие - Business Intelligence Tools (инструментальные средства бизнес-интеллекта) - программное обеспечение, которое дает возможность пользователям наблюдать и использовать большие объемы сложных данных.

Выделяют три типа таких инструментальных средств:

1. Средства многомерного анализа- также известные как OLAP (On-Line Analytical Processing) - программное обеспечение, которое дает пользователю возможность наблюдать данные в различных измерениях, направлениях или сечениях.

2. Инструментальные средства запросов (Query Tools) - программное обеспечение, позволяющее формировать запросы к данным по содержанию или образцу.

3. Инструментальные средства поиска данных (Data Mining Tools) - программное обеспечение, которое осуществляет автоматический поиск важных образцов (моделей), или зависимостей в данных.

Под приведенное определение Пауэра это попадает и, наверное, к рассматриваемой теме относится. Но давайте пока отвлечемся от прикладной лингвистики. К ней мы вернемся позже - после рассмотрения целей, назначения и конкретных реализаций, которые должны прояснить дело.

Цели, назначение, практика

  • финансовый анализ и прогнозирование;
  • маркетинг реализации и закупок;
  • анализ стереотипов клиентского поведения и выявление скрытых закономерностей;
  • анализ рисков;
  • управление активами.
  • Каким образом данные задачи соотносятся с общей задачей информационного обслуживания бизнеса? К информационному обслуживанию бизнеса можно отнести:
  • увязку стратегических задач бизнеса и ИТ;
  • распределение и контроль прикладного программного обеспечения;
  • оперативную поддержку пользователей;
  • а также управление:
  • проектами;
  • производственными мощностями;
  • изменениями;
  • проблемами;
  • издержками;
  • непредвиденными ситуациями;
  • вспомогательными службами;
  • взаимоотношениями с клиентами;
  • взаимоотношениями с поставщиками.

Более укрупненно можно говорить о том, что информационные технологии сосредоточены на обслуживании процессов, связанных с:

  • людьми;
  • процессами;
  • стратегиями;
  • технологиями.

Как можно видеть, в сферу приложения систем DSS попадает почти половина структурных задач, возлагаемых на ИТ-службы. Это находит подтверждение при анализе рынка прикладных информационных систем. Так, мировой рынок, например, ERP-систем оценивается в настоящее время оборотами порядка 25 млрд. долларов. Рынок DSS-cистем, который возник только в середине 90-х годов, сейчас оценивается суммой порядка 10 млрд. долларов и растет существенно большими темпами, чем рынок корпоративных систем управления. Его рост порядка 30% в год против 10-15% роста ERP-рынка, и можно предположить, что в течение ближайших пяти лет можно ожидать достижения паритета. С другой стороны, если рынок систем DSS в настоящее время в основном связан с финансовым сектором, крупноформатной торговлей и телекоммуникациями, то можно ожидать постепенной ассимиляции функциональных возможностей DSS-систем в существующие системы ERP-класса, что, по-видимому, приведет к оживлению процессов обновления версий ERP-систем в корпоративном секторе.

Анализируя тенденции развития функциональности ERP-систем, можно уверенно говорить о том, что этот процесс уже идет. Так, практически во всех ведущих ERP-системах уже имплементированы функциональные возможности прогнозирования с использованием разнообразных статистических методов. Представляется очень перспективным развитие подходов DSS-систем в управлении активами, в частности, в организации эксплуатации и ремонтов оборудования. Это связано с постепенной миграцией подходов, а именно, от управления ремонтами по состоянию, к управлению на основе прогнозирования будущего состояния производственных мощностей. В Украине в данной сфере еще превалируют календарные подходы и управление эксплуатацией на основе учета наработки. Эти подходы были присущи промышленности развитых стран мира в 80-е годы и являются избыточными по издержкам содержания производственных мощностей.

Рассматривая деятельность корпораций в конкурентном окружении, Майкл Портер, например, выделяет следующую шестифакторную модель (рис.).

Можно быть уверенным, что в усилении данных конкурентных позиций и лежит основной предмет DSS-систем. Существенным фактором их развития является то, что к настоящему времени в транзакционных системах управления оперативной деятельностью компаний накоплен огромный объем данных, значение которых в настоящее время во многом не осознано и не используется.

Диаграмма сравнительной конкурентоспособности по Майклу Портеру

Крупноформатная торговля

Крупноформатная торговля и компании электронной коммерции (B2C, B2B) явились первыми институциональными заказчиками на DSS-системы. Основными задачами, решаемыми в данном секторе, являются:

  • анализ ассортимента (селективный маргинальный доход, оборачиваемость запасов, статистическое управление запасами, фондоотдача);
  • распределение площадей, раскладка;
  • анализ эффективности деятельности менеджеров и мотивация персонала;
  • планирование и анализ эффективности рекламы, акций, распродаж и т.п.;
  • управление ценообразованием.

В части управления раскладкой можно привести известный пример с корреляцией покупок пива и памперсов. Или так называемая «ловушка на кассе» - это мелкие товары, которые выкладываются непосредственно в кассовой зоне. Площадь этой зоны ограничена. Что туда положить? Опять «нет ничего практичнее хорошей теории» - нужен анализ потребительских предпочтений, который, в частности, дает многомерный статистический анализ чеков. В мелкооптовой торговле ситуация попроще, т.к. там потребитель идентифицирован и учтен в базе данных торговой компании, что позволяет непосредственно анализировать клиентское поведение. В розничной торговле покупатель анонимный, хотя многие компании изначально это исключают, например, METRO Cash & Carry.Вообще основная тенденция развития прикладных информационных систем в последние пять лет - это ассимиляция систем управления взаимоотношениями с клиентами, возникших в качестве самостоятельных, в контур ERP, причем обе при этом только выигрывают.

Банки и финансовые компании

Рынок DSS-систем в финансовых институтах сейчас самый емкий. Сфера применения DSS-систем в банках касается прежде всего:

  • банковского ритейла (платежные пластиковые карты и чеки);
  • анализа рисков;
  • предотвращения мошенничества (прежде всего с пластиковыми картами);
  • анализа потребительского поведения и проектирования новых финансовых услуг.

Последнее, прежде всего, основано на анализе и формировании потребительских групп, которые характеризуются сходным поведением. Результатом этой работы являются проекты, например, молодежных жилищных кредитов, условия овердрафтов, VIP-программы клиентского обслуживания. При этом надо отвечать на вопросы: что такое «молодежь»?, кто такой VIP-клиент? и т.д.Предотвращение мошенничества - это перспективная зона использования методов искусственного интеллекта, которая никогда не будет исчерпана, как никогда не будет исчерпано воображение у мошенников.В страховых компаниях DSS-системы еще не имеют такого широкого распространения, но это только подчеркивает потенциальную перспективность данного рынка.

Телекоммуникации

В телекоммуникационных компаниях, прежде всего мобильной связи, роль DSS-систем связана с проектированием новых услуг, которое основано на выявлении устойчивых клиентских групп и преимущественного клиентского поведения. Этот рынок по времени жизни можно считать неисчерпаемым.

Промышленность

В промышленности к сферам применения DSS-систем можно отнести:

  • управление взаимоотношениями с клиентами;
  • статистическое управление запасами;
  • финансовое и бюджетное планирование и управление;
  • анализ и управление рисками.

Какие изменения в парадигме управления промышленностью произошли за последние 50 лет? До 60-х годов промышленное производство развивалось главным образом за счет развития технологии, что выражалось тезисом: «производить и продавать». В тот период, безусловно, предложение явно формировало спрос. При этом основные производственные фонды были преимущественно материальными: здания, сооружения, оборудование, за которым стояли патентованные технологии. К концу 20-го века признанным тезисом, выражающим рациональное рыночное поведение, стала парадигма «воспринимать и реагировать». Темп появления новых революционных технологий замедлился, технологии в основном находятся на этапе эволюции. А фронт конкурентной борьбы переместился в область проектирования новых продуктов и услуг. При этом превалирующим стали намерения и пожелания клиентов: явно или неявно выраженные. В качестве примеров можно привести практически полный переход на заказное конфигурирование автомобильной промышленности, постоянно возрастающий спектр предложений услуг в сфере телекоммуникаций при том же самом оборудовании и т.д.Все большее и большее значение приобретает информация и методы работы с ней. Это тем более актуально в развитых странах мира на фоне сохраняющейся тенденции переноса непосредственно материального производства в развивающиеся страны с низкой стоимостью рабочей силы, энергетических и сырьевых ресурсов. Концепция DSS-систем прямо соответствует задаче информационного обеспечения данной парадигмы.

Каковы сегодня основные промышленные тенденции? Это:

  • глобализация;
  • укрупнение;
  • специализация (для средних компаний);
  • интеграция в поставочные сети;
  • фокусировка на разработке новых продуктов и услуг;
  • необходимость одновременно конкурировать как по качеству, так и по цене.
  • Промышленность сегодня фокусируется на:
  • разработке новых продуктов;
  • коммерциализации;
  • использовании преимуществ консолидации и интеграции в поставочные сети;
  • управлении людскими ресурсами.

Анализируя причины отставания США в промышленном развитии, Комиссия Министерства внешней торговли США считает, что для подъема конкурентоспособности, в частности, необходимо (автор приводит только те пункты рекомендаций, которые имеют отношение к предмету рассмотрения, сам исходный перечень немного шире):

уделять больше внимания стратегическому планированию и больше инвестировать в исследования и разработки;

изучать стратегию иностранных конкурентов и совершенствовать собственную;

  • уделять больше внимания производственной функции и больше инвестировать в оборудование и кадры;
  • устранить коммуникативные барьеры в пределах организации;
  • признать ценность развития информационных связей с поставщиками и потребителями.

Информационная поддержка реализации вышеперечисленных рекомендаций со стороны DSS-систем может выглядеть следующим образом:

  • «уделять …внимание стратегическому планированию…» - анализировать исторические данные по структуре себестоимости, динамике цен;
  • «изучать стратегию иностранных конкурентов» - анализировать динамику рынков;
  • «уделять больше внимания производственной функции» - анализировать затраты по управлению активами, динамику тарифов, эффективность использования оборудования и фондоотдачу;
  • «устранить коммуникативные барьеры» - анализировать исторические данные по параметрам реализации внутренних бизнес-процессов и эффективность результатов;
  • «признать ценность развития информационных связей» - анализировать исторические данные взаимоотношений с клиентами и поставщиками.

Эффективное решение данных задач требует углубленного анализа как рыночного окружения, так и динамики использования всех внутренних ресурсов.

Особое значение в конкурентной борьбе при практически равной ситуации по возможности доступа к технологиям приобретает персонал и подходы к управлению. В развитых странах мира персонал, по крайней мере, ведущий в стратегическом планировании, переместился из категории «Затраты» (Cost) в категорию «Фонды» - первые надо неуклонно сокращать, а вторые надо развивать и инвестировать.

Также следует отметить, что в настоящее время в мире действует общая глобальная тенденция преимущественного развития рынка услуг по сравнению со сферой непосредственно производства. Экономика все более и более становится информационной, а не материальной.

Рассматривая корпоративный рынок, очень показательным является анализ того, что могут и чего не могут наследуемые системы, прежде всего типов ERP и Project Management.

Оборона

В оборонной области аналитические системы класса DSS развиваются в решении задач:

планирования и управления операциями;

планирования и управления эксплуатацией.

Так, по результатам первой войны в Ираке экономический эффект от использования систем искусственного интеллекта был оценен в сумму порядка 100 млн. долларов. Это привело приблизительно к трехкратному увеличению ассигнований на развитие данных информационных технологий в интересах Министерства обороны США. Сегодня в данной области ассигнования уже оцениваются суммами в миллиарды долларов.

Государство

В области государственного строительства роль DSS-систем пока невелика. Потенциально их область использования связана с оценкой эффективности государственных и муниципальных программ. Это связано, прежде всего, с тем, что государственные и муниципальные программы не сводятся к экономическому эффекту как таковому. Развитие информационных систем в данной сфере в большой мере зависят от философского осмысления роли и места государства в будущем мире, т.е. основополагающую роль в данном процессе имеет выработка критериев и подходов к их оценке.

Предложения

Обобщенный портрет DSS-систем можно составить на основе краткого анализа предложений компаний Cognos, SAS, Hyperion, Oracle. Так как данная статья носит вводный характер, автор не ставил перед собой целью сравнительный анализ продуктов - это тема других работ.

Прежде всего, следует обратить внимание на то, что перечень ключевых игроков на рынке DSS-систем не совпадает с лидирующим списком производителей систем ERP. Присутствие компании Oracle в приведенном списке отражает явно выраженное намерение компании Oracle развивать данное направление, наличие действительно развитого инструментального набора для выполнения подобных проектов, последние приобретения компании в данной области. С этой точки зрения в анализируемый список можно было бы добавить и IBM с Microsoft, но эти производители все-таки больше относятся к инструментальной области и платформам, чем к прикладной.

В основной функциональный набор DSS-систем входят:

  • финансовое планирование и бюджетирование;
  • формирование консолидированной отчетности (до 200 преднастроенных отчетов);
  • создание информационной системы стратегического управления на основе ключевых показателей деятельности (Balance Score Cards) с преднастроенными библиотеками показателей (до 500);
  • анализ взаимоотношений с клиентами и поставщиками;
  • анализ рыночных тенденций;
  • функционально-стоимостный анализ (ABC-Costing);
  • функционально-стоимостное управление (Activity Based Management, ABM);
  • система постоянных улучшений (Kiezen Costing);
  • многомерный анализ данных (OLAP);
  • выявление скрытых закономерностей (Data Mining);
  • выявление моделей (структур) данных;
  • статистический анализ и прогнозирование временных рядов;
  • событийное управление бизнесом (Event-driven BI);
  • анализ рисков;
  • формирование преднастроенных запросов (до 500-600);
  • интеллектуальный поиск (по неполным данным и неформальным запросам);
  • бизнес-моделирование и анализ эффективности выполнения бизнес-процессов;
  • референтные отраслевые модели.
  • Количество преднастроенных областей анализа достигает 30-40.
  • Событийное управление бизнесом связано с обнаружением преднастроенных событий вида:
  • уведомления об определенном состоянии;
  • исполнение;
  • операционные события.
  • Информационной платформой являются хранилища данных (Data Warehouse).
  • Инструментальная среда - интеграционные системы, основанные на открытых стандартах. Эти системы соответствуют требованиям:
  • информационной безопасности;
  • масштабируемости;
  • открытости;
  • многомерного и многовариантного представления данных;
  • интеллектуального интерфейса;
  • интегрируемости с основными платформами и бизнес-приложениями, интеграция данных из разнообразных источников, сетевая интеграция (прежде всего web);
  • обеспечивают сервис по «очистке» данных при их загрузке в хранилища.
  • Техническое обеспечение связано с:
  • обработкой данных;
  • надежным хранением данных и обеспечением целостности;
  • архивацией и восстановлением данных;
  • сетевым и телекоммуникационным обеспечением;
  • криптографическим обеспечением;
  • управлением доступом пользователей;
  • загрузкой данных, в том числе с использованием средств интеллектуального интерфейса (распознавание образов: текста, речи, изображений).

Отличительной особенностью рассматриваемых продуктов является значительная большая, чем в случае с ERP-системами, готовность к немедленной работе (значительно меньшие циклы внедрения при наличии наследуемых баз данных).

Целевые результаты

Результаты выполнения проектов целевым образом соответствуют предоставлению возможности получения ответов на вопросы:

  • здоров ли бизнес?
  • кто мой лучший клиент?
  • какой мой лучший продукт или услуга?
  • какого поставщика мне выгодно выбрать и почему?
  • где мы типично не укладываемся в сроки и почему?
  • какова эффективность деятельности нашего персонала?
  • какая дочерняя компания внесла наибольший (наименьший) вклад в результат?
  • что показывает анализ фондоотдачи оборудования?
  • какой сценарий и подход выбрать при слиянии (реструктуризации) компаний?
  • и т.п.

Классификация типовых задач анализа и статистических методов их решения

В настоящем разделе будет приведена возможная классификация аналитических задач, возникающих в сфере бизнеса, финансов и управления и решаемых статистическими методами. Будет рассмотрена также классификация статистических методов, представленных в DSS-системах перечисленных выше компаний, и их применимость для решения различных классов аналитических задач.

Выделим следующие классы аналитических задач в области финансов, бизнеса и управления, требующих для своего решения использования различных статистических методов:

  • горизонтального (временного) анализа;
  • вертикального (структурного) анализа;
  • трендового анализа и прогноза;
  • анализа относительных показателей;
  • сравнительного (пространственного) анализа;
  • факторного анализа.

Далеко не все аналитические задачи из перечисленных выше являются в настоящий момент одинаково важными для каждой конкретной компании. В их повседневной деятельности еще велика доля рутинных бухгалтерских операций и много такого, что пока вовсе не требует никакого анализа. Однако необходимость повышения роли аналитического подхода начинают ощущать даже совсем малые фирмы.

Рассмотрим теперь классификацию методов статистического анализа. Все эти методы могут быть разделены на следующие классы:

  • описательной статистики;
  • проверки статистических гипотез;
  • регрессионного анализа;
  • дисперсионного анализа;
  • анализа категориальных данных;
  • многомерного анализа;
  • дискриминантного анализа;
  • кластерного анализа;
  • анализа выживаемости;
  • анализа и прогноза временных рядов;
  • статистического планирования экспериментов и статистического контроля качества.

Детальный анализ приведенных математических методов также оставим за пределами нашего обзорного рассмотрения.

Аналитические методы в средствах разведки данных (Data Mining)

Аналитические методы дают конечному пользователю возможность осуществить весь цикл работы с исходными данными, имеющими большие объемы и невыясненную статистическую структуру. Этот цикл называется разведкой данных (Data Mining) и состоит из нескольких этапов: выборка, исследование, модификация, моделирование, оценка результатов (Sample, Explore, Modify, Model, Assess).

Средства Data Mining дают возможность ставить и решать как традиционные, так и нетрадиционные задачи анализа. Например, традиционной является постановка задачи: «Определить, имеется ли статистическая связь между такими показателями, как объем производства товара и объем его реализации (продажи)».

Нетрадиционной же была бы следующая постановка задачи: «Имеется несколько десятков (или даже сотен) показателей деятельности предприятия, и необходимо определить, между какими из них следует искать статистические связи вообще, какого рода связи следует искать (считать ли показатели равноправными, или считать одни показатели независимыми, а другие зависимыми переменными), на каких объектах эти связи проявляются».

При работе приложения на этапе выборки происходит формирование подмножества наблюдений из исходных данных (отбор по критериям или случайный отбор). На этапах исследования и модификации могут быть осуществлены: фильтрация данных, отбрасывание данных с большими выбросами, преобразование исходных переменных. На этапе моделирования осуществляется построение регрессий и оптимизация подмножества переменных, принятие решений на основе методик нейронных сетей, реализующих различные алгоритмы обучения классификации объектов, построение классификационных деревьев для отбора оптимального набора переменных и оптимального разбиения множества объектов, кластеризация и оптимальная группировка объектов. Наконец, на этапе обзора и оценки результатов пользователь имеет возможность сопоставить различные результаты моделирования, выбрать оптимальные класс и параметры моделей, представить результаты анализа в удобной форме.

На этапе подготовки данных обеспечивается доступ к любым реляционным базам данных, текстовым и SAS-файлам. Дополнительные средства преобразования и очистки данных позволяют изменять вид представления, проводить нормализацию значений, выявлять неопределенные или отсутствующие значения. На основе подготовленных данных специальные процедуры автоматически строят различные модели для дальнейшего прогнозирования, классификации новых ситуаций, выявления аналогий. Данные приложения поддерживают построение пяти различных типов моделей - нейронные сети, классификационные и регрессионные деревья решений, ближайшие k-окрестности, байесовское обучение и кластеризацию.

Анализ математического обеспечения существующих систем поддержки принятия решений

Рассмотрим более подробно средства интеллектуального анализа данных (ИАД, Data Mining), применяемые в системах поддержки принятия решений.

В качестве первого направления развития средств ИАД следует выделить методы статистической обработки данных, которые можно разделить на четыре взаимосвязанных раздела:

  • предварительный анализ природы статистических данных (проверка гипотез стационарности, нормальности, независимости, однородности, оценка вида функции распределения и ее параметров);
  • выявление связей и закономерностей (линейный и нелинейный регрессионный анализ, корреляционный анализ);
  • многомерный статистический анализ (линейный и нелинейный дискриминантный анализ, кластер-анализ, компонентный анализ, факторный анализ);
  • динамические модели и прогноз на основе временных рядов.

Среди наиболее известных и популярных средств статистического анализа следует назвать пакеты Statistica, SPSS, Systat, Statgraphics, SAS, BMDP, TimeLab, DataDesk, SPlus, Scenario (BI), «Мезозавр».

Особое направление в спектре аналитических средств ИАД составляют методы, основанные на нечетких множествах. Их применение позволяет ранжировать данные по степени близости к желаемым результатам, осуществлять так называемый нечеткий поиск в базах данных. Однако платой за повышенную универсальность является снижение уровня достоверности и точности получаемых результатов. Поэтому число специализированных приложений данного метода по-прежнему невелико, несмотря на то, что на протяжении последних 35 лет математики-прикладники проявляли к нему повышенный интерес.

Второе крупное направление развития составляют кибернетические методы оптимизации, основанные на принципах саморазвивающихся систем - методы нейронных сетей, эволюционного и генетического программирования.

Однако новые достоинства порождают и новые проблемы. В частности, решения, полученные кибернетическими методами, часто не допускают наглядных интерпретаций, что в определенной степени усложняет жизнь предметным экспертам.

К программным продуктам, использующим кибернетические методы ИАД, относятся системы PolyAnalyst, Neur-oShell, GeneHunter, BrainMaker, OWL, 4Thought (BI).

Непосредственно к кибернетическим методам ИАД примыкают синергетические методы. Их применение позволяет реально оценить горизонт долгосрочного прогноза. Особенный интерес вызывают исследования, связанные с попытками построения эффективных систем управления в неустойчивых режимах функционирования.

К третьему крупному разделу ИАД следует отнести совокупность традиционных методов решения оптимизационных задач - вариационные методы, методы исследования операций, включающие в себя различные виды математического программирования (линейное, нелинейное, дискретное, целочисленное), динамическое программирование, принцип максимума Понтрягина, методы теории систем массового обслуживания. Программные реализации большинства этих методов входят в стандартные пакеты прикладных программ, например Math CAD и MatLab.

В четвертый раздел средств ИАД входят средства, которые назовем условно экспертными, т. е. связанными с непосредственным использованием опыта эксперта. К их числу относят метод «ближайшего соседа», который лег в основу таких программных продуктов, как Pattern Recognition Workbench или KATE tools.

Другой подход к выбору решения связан с построением последовательного логического вывода - дерева решений, в каждом узле которого эксперт осуществляет простейший логический выбор («да» - «нет»). В зависимости от принятого выбора, поиск решения продвигается по правой или левой ветви дерева и в конце концов приходит к терминальной ветви, отвечающей конкретному окончательному решению. Здесь процесс статистического обучения выведен за пределы программы и сконцентрирован в виде некоторого априорного опыта, заключенного в наборе ветвей-решений.

Одной из разновидностей метода деревьев решений является алгоритм деревьев классификации и регрессии, предлагающий набор правил для дихотомической классификации совокупности исходных данных. Данный метод обычно применяется для предсказания того, какие последовательности событий будут иметь заданный исход. На основе деревьев решений разработаны такие программные продукты, как IDIS, С5.0 и SIPINA.

К экспертным методам следует отнести и предметно-ориентированные системы анализа ситуаций и прогноза, основанные на фиксированных математических моделях, отвечающих той или иной теоретической концепции. Роль эксперта состоит в выборе наиболее адекватной системы и интерпретации полученного алгоритма. Достоинства и недостатки таких систем очевидны - предельная простота и доступность применения и расплата достоверностью и точностью за эту простоту. Примерами программных продуктов, отвечающих предметно-ориентированным системам в области финансов, являются Wall Street Money, MetaStock, SuperCharts, Candlestick Forecaster.

В завершение обзора экспертных методов ИАД следует упомянуть методы визуализации данных и результатов их анализа, позволяющие наглядно отображать полученные выводы для создания у предметных экспертов и/или руководителей проектов единой картины ситуации. К программным продуктам, позволяющим формировать предварительные отчеты и визуализировать результаты, следует отнести системы Mineset и Impromptu (BI). В частности, система Mineset содержит в себе такие инструменты, как ландшафтный визуализатор, визуализаторы дисперсии, деревьев, правил и свидетельств.

Формировать сложные нелинейные отображения средствами цветной графики позволяет новое направление визуализации результатов, основанное на идеях фрактальной математики.

В начале пути

Если говорить о практике внедрения рассмотренных систем и информационных технологий в Украине, то она находится в самом зачаточном состоянии. Основной целью настоящей статьи и являлось привлечь внимание, прежде всего функциональных руководителей соответствующих служб, к имеющимся возможностям, мировой практике использования систем и основным тенденциям их развития.

Опыт автора по проведению подготовительной работы к внедрению рассматриваемых продуктов показал, что, с одной стороны, на украинских предприятиях исторические данные недооцениваются, а имеющиеся базы данных часто очень «бедны» для извлечения из них значимой информации, т.к. разрабатывались для решения учетных, а не управленческих задач. С другой стороны, в Украине очень ограничены возможности извлечения знаний из данных вследствие большой скорости изменений законодательной базы, что очень сильно искажает временную статистику. Это приводит к необходимости использования, например, нелинейных методов, в развитии которых вместе с украинскими учеными активное участие принимает компания, возглавляемая автором.

Научные направления, имеющие отношение к рассматриваемому вопросу, практически остались за пределами настоящей статьи, как по причине ограниченности формата, так и потому, что относятся в основном к другой сфере знания - самой что ни на есть фундаментальной математике.

Кроме этой статьи Вы можете посмотреть по тематеке текущего раздела:
в разделе "Энциклопедия"
2 статьи в разделе "Статьи".
1 статьи в разделе "История".
__________________

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА

И ГОСУДАРСТВЕННОЙ СЛУЖБЫ

при ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Северо-Западный институт управления

Факультет: Государственного и муниципального управления

Кафедра: Общего менеджмента и логистики

Курсовая работа

«Системы поддержки принятия решений»

Студент 3 курса

Очной формы обучения

Фетискин Иван Юрьевич

Руководитель работы

Доцент, кандидат филологических наук

Мысин Николай Васильевич

Санкт-Петербург 2015 г.

Введение

Глава 1. Теоретические аспекты и понятия систем поддержки принятия решений

1 Определение системы поддержки принятия решений, ее функции

2 Структура систем поддержки принятия решений

3 Хранилища данных

4 OLAP- технологии

5 Интеллектуальный анализ данных

6 Классификации систем поддержки принятия решений

7 Области применения

8 Рынок СППР

9 Оценка системы поддержки принятия решений (СПРР)

Глава 2 Практика реализации СППР на примере территориальных учреждений Банка России

1 Формулирование целей и задач исследования, характеристика исследуемого объект

2 Общий обзор и описание работы

2.1 Разработка СППР в управлении деятельностью территориальных учреждений Банка России

2.2 Описание функциональных подсистем

2.3 Разработка СППР на уровне ТУ, реализующей методические и инструментальные решения

3 Выводы и результаты применения данной СППР

Заключение

Список литературы

Введение

Развивающиеся рыночные отношения, децентрализация управления, быстрое устаревание информации обусловливают высокие требования к современному руководителю. Знание и умелое использование положений менеджмента существенно облегчают труд руководителя, помогают ему определять приоритеты и систематизировать работу. Базой, на которой строится вся управленческая деятельность, служат организационные структуры.

Организации создают структуры для того, чтобы обеспечивать координацию и контроль деятельности своих подразделений и работников. Структуры организаций отличаются друг от друга сложностью (т. е. степенью разделения деятельности на различные функции), формализацией (т. е. степенью использования заранее установленных правил и процедур), соотношением централизации и децентрализации (т. е. уровнями, на которых принимаются управленческие решения).

Структурные взаимосвязи в организациях находятся в центре внимания многих исследователей и руководителей. Для того чтобы эффективно достигались цели, необходимо понимание структуры работ, подразделений и функциональных единиц. Организация работы и людей во многом влияет на поведение работников. Структурные и поведенческие взаимосвязи, в свою очередь, помогают установить цели организации, влияют на отношения и поведение работников. Структурный подход применяется в организациях для обеспечения основных элементов деятельности и взаимосвязей между ними. Он предполагает использование разделения труда, охвата контролем, децентрализации и департаментализации.

В условиях динамичности современного производства и общественного устройства управление должно находиться в состоянии непрерывного развития, которое сегодня невозможно обеспечить без исследования путей и возможностей этого развития, без выбора альтернативных направлений. Исследование управления осуществляется в каждодневной деятельности менеджеров и персонала и в работе специализированных аналитических групп, лабораторий, отделов. Необходимость в исследованиях систем управления продиктована достаточно большим кругом проблем, с которыми приходится сталкиваться многим организациям. От правильного решения этих проблем зависит успех работы этих организаций.

Организационная структура управления - одно из ключевых понятий менеджмента, тесно связанное с целями, функциями, процессом управления, работой менеджеров и распределением между ними полномочий. В рамках этой структуры протекает весь управленческий процесс (движение потоков информации и принятие управленческих решений), в котором участвуют менеджеры всех уровней, категорий и профессиональной специализации. Структуру можно сравнить с каркасом здания управленческой системы, построенным для того, чтобы все протекающие в ней процессы осуществлялись своевременно и качественно.

Различия в структуре организации, в особенностях их функционирования накладывают очень существенный отпечаток на управленческую деятельность, а в ряде случаев и оказывают на нее определяющее влияние. Кроме того, деятельность руководителя, ее психологические особенности зависят не только от типа организационной структуры, но и от его иерархического места в этой структуре, что, собственно, и делает тему данной курсовой работы наиболее актуальной.

Научно обоснованное формирование организационных структур управления - актуальная задача современного этапа адаптации хозяйствующих субъектов к рыночной экономике. В современных условиях необходимо широко использовать принципы и методы проектирования организации управления на основе системного подхода.

ЦЕЛЬ ДАННОЙ КУРСОВОЙ РАБОТЫ заключается в том, чтобы изучить принцип иерархии в структуре управления организации.

Для достижения поставленной цели в работе определены следующие задачи:

исследование сущности и принципов построения организационных структур, их классификации и этапов исторического развития;

исследование сущности и принципов построения организационных структур;

построение стратегии организационных изменений.

МЕТОДЫ ИССЛЕДОВАНИЯ: аналитический, графический.

Для написания данной работы использовались научные труды и разработки отечественных и зарубежных авторов, посвященные вопросам процессного управления, создания систем поддержки принятия управленческих решений. В работе использованы материалы, опубликованные в российской и зарубежной печати, а также представленные на специализированных профессиональных сайтах сети Internet.

Глава 1. Теоретические аспекты и понятия систем поддержки принятия решений

1 Определение системы поддержки принятия решений, ее функции

Очевидно, что принимаемые решения о стратегии и тактике развития города должны быть тщательно продуманы и обоснованы. Это особенно важно именно в социально-экономических системах, так как принимаемые решения касаются живых людей, их материального и духовного состояния. Тем не менее, на сегодняшний день принятие решений мэром, городской администрацией, комитетами основано на опыте и интуиции руководителей. Но социально-экономические системы сложны и их поведение трудно предсказать из-за наличия огромного количества прямых и обратных связей, часто неочевидных с первого взгляда. Человеческий мозг неспособен справиться с задачей такой размерности, поэтому необходимо обеспечить информационно-аналитическую поддержку принятия решений. В последние годы сформировалось и активно используется новое направление в области автоматизации управленческого труда - системы поддержки принятия решений. Они с успехом применяются в самых разных отраслях: телекоммуникациях, финансовой сфере, торговле, промышленности, медицине и многих других.

Концепция систем поддержки принятия решений (СППР) включает целый ряд средств, объединенных общей целью - способствовать принятию рациональных и эффективных управленческих решений.

Система поддержки принятия решений (СППР) - компьютерная автоматизированная система, целью которой является помощь людям, принимающим решение в сложных условиях для полного и объективного анализа предметной деятельности. Это диалоговая система, использующая правила принятия решений и соответствующие модели с базами данных, а также интерактивный компьютерный процесс моделирования.

СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных. СППР являются человеко-машинными системами, которые позволяют лицам, принимающим решения, использовать данные, знания, объективные и субъективные модели для анализа и решения неструктурированных и слабо формализуемых задач.

Процесс принятия решения - это получение и выбор наиболее оптимальной альтернативы с учетом просчета всех последствий. При выборе альтернатив- надо выбирать ту, которая наиболее полно отвечает поставленной цели, но при этом приходится учитывать большое количество противоречивых требований и, следовательно, оценивать выбранный вариант решения по многим критериям.

Система поддержки принятия решений предназначена для поддержки многокритериальных решений в сложной информационной среде. При этом под многокритериальностью понимается тот факт, что результаты принимаемых решений оцениваются не по одному, а по совокупности многих показателей (критериев) рассматриваемых одновременно. Информационная сложность определяется необходимостью учета большого объема данных, обработка которых без помощи современной вычислительной техники практически невыполнима. В этих условиях число возможных решений, как правило, весьма велико, и выбор наилучшего из них "на глаз", без всестороннего анализа может приводить к грубым ошибкам.

Также СППР позволяет облегчить работу руководителям предприятий и повысить ее эффективность. Они значительно ускоряют решение проблем в бизнесе. СППР способствуют налаживанию межличностного контакта. На их основе можно проводить обучение и подготовку кадров. Данные информационные системы позволяют повысить контроль над деятельностью организации. Наличие четко функционирующей СППР дает большие преимущества по сравнению с конкурирующими структурами. Благодаря предложениям, выдвигаемым СППР, открываются новые подходы к решению повседневных и нестандартных задач.

СППР характеризуется следующими отличительными особенностями:

·ориентацией на решение плохо структурированных (формализованных) задач, характерных главным образом для высоких уровней управления;

·возможностью сочетания традиционных методов доступа и обработки компьютерных данных с возможностями математических моделей и методами решения задач на их основе;

·направленностью на непрофессионального конечного пользователя ЭВМ посредством использования диалогового режима работы;

·высокой адаптивностью, обеспечивающей возможность приспосабливаться к особенностям имеющегося технического и программного обеспечения, а также требованиям пользователя.

Система поддержки принятия решений решает две основные задачи:

.выбор наилучшего решения из множества возможных (оптимизация);

2.упорядочение возможных решений по предпочтительности (ранжирование).

Для анализа и выработок предложений в СППР используются разные методы. Это могут быть:

·информационный поиск,

·интеллектуальный анализ данных,

·поиск знаний в базах данных,

·рассуждение на основе прецедентов,

·имитационное моделирование,

·эволюционные вычисления и генетические алгоритмы,

·нейронные сети,

·ситуационный анализ,

·когнитивное моделирование и др.

Некоторые из этих методов были разработаны в рамках искусственного интеллекта. Если в основе работы СППР лежат методы искусственного интеллекта, то говорят об интеллектуальной СППР или ИСППР.

Близкие к СППР классы систем - это экспертные системы и автоматизированные системы управления.

Система позволяет решать задачи оперативного и стратегического управления на основе учетных данных о деятельности компании.

Система поддержки принятия решений представляет собой комплекс программных инструментальных средств для анализа данных, моделирования, прогнозирования и принятия управленческих решений, состоящий из собственных разработок корпорации и приобретаемых программных продуктов (Oracle, IBM, Cognos).

Теоретические исследования в области разработки первых систем поддержки принятия решений проводились в технологическом институте Карнеги в конце 50-х начале 60-х годов XX века. Объединить теорию с практикой удалось специалистам из Массачусетского технологического института в 60-х годах. В середине и конце 80-х годов XX столетия стали появляться такие системы, как EIS, GDSS, ODSS. В 1987 году компания Texas Instruments разработала для United Airlines Gate Assignment Display System. Это позволило значительно снизить убытки от полетов и отрегулировать управление различными аэропортами, начиная от Международного аэропорта OHare в Чикаго и заканчивая Stapleton в Денвере, штат Колорадо. В 90-х годах сфера возможностей СППР расширялась благодаря внедрению хранилищ данных и инструментов OLAP. Появление новых технологий отчетности сделало СППР незаменимой в менеджменте.

1.2 Структура СППР

Если говорить о структуре СППР, то выделяют четыре основных компонента:

·Информационные хранилища данных. Хранилище данных представляет собой банк данных определенной структуры, содержащий информацию о производственном процессе компании в историческом контексте. Главное назначение хранилища - обеспечивать быстрое выполнение произвольных аналитических запросов. (Более подробно о хранилищах данных говориться в пункте 1.3 гл.1.)

·Многомерная база данных и средства анализа OLAP (On-Line Analitycal Processing) - сервис представляет собой инструмент для анализа больших объемов данных в режиме реального времени. (подробно в п. 1.4 гл.1)

·Средства Data Mining. При помощи средств добычи данных можно проводить глубокие исследования данных. (Более подробно в п. 1.5 гл. 1.)

Основу СППР составляет комплекс взаимосвязанных моделей с соответствующей информационной поддержкой исследования, экспертные и интеллектуальные системы, включающие опыт решения задач управления и обеспечивающие участие коллектива экспертов в процессе выработки рациональных решений.

Ниже на рис.1 приведен архитектурно-технологическая схема информационно-аналитической поддержки принятия решений:

Рис.1 Архитектурно-технологическая схема СППР

Аналитические системы СППР позволяют решать три основных задачи:

.ведение отчётности,

.анализ информации в реальном времени (OLAP),

.интеллектуальный анализ данных.

3 Хранилища данных

Ясно, что принятие решений должно основываться на реальных данных об объекте управления. Такая информация обычно хранится в оперативных базах данных OLTP-систем. Но эти оперативные данные не подходят для целей анализа, так как для анализа и принятия стратегических решений в основном нужна агрегированная информация. Кроме того, для целей анализа необходимо иметь возможность быстро манипулировать информацией, представлять ее в различных аспектах, производить различные нерегламентированные запросы к ней, что затруднительно реализовать на оперативных данных по соображениям производительности и технологической сложности.

Решением данной проблемы является создание отдельного хранилища данных (ХД), содержащего агрегированную информацию в удобном виде. Целью построения хранилища данных является интеграция, актуализация и согласование оперативных данных из разнородных источников для формирования единого непротиворечивого взгляда на объект управления в целом. При этом в основе концепции хранилищ данных лежит признание необходимости разделения наборов данных, используемых для транзакционной обработки, и наборов данных, применяемых в системах поддержки принятия решений. Такое разделение возможно путем интеграции разъединенных в различных системах обработки данных (СОД) и внешних источниках детализированных данных в едином хранилище, их согласования и, возможно, агрегации.

Следует отметить главные преимущества хранилищ данных СППР:

·Единый источник информации: компания получает выверенную единую информационную среду, на которой будут строиться все справочно- аналитические приложения в той предметной области, по которой построено хранилище. Эта среда будет обладать единым интерфейсом, унифицированными структурами хранения, общими справочниками и другими корпоративными стандартами, что облегчает создание и поддержку аналитических систем.

·Также, при проектировании информационного хранилища данных особое внимание уделяют достоверности информации, которая попадает в хранилище.

·Производительность: физические структуры хранилища данных специальным образом оптимизированы для выполнения абсолютно произвольных выборок, что позволяет строить действительно быстрые системы запросов.

·Быстрота разработки: специфическая логическая организация хранилища и существующее специализированное ПО позволяют создавать аналитические системы с минимальными затратами на программирование.

·Интегрированность: интеграция данных из разных источников уже сделана, поэтому не надо каждый раз производить соединение данных для запросов требующих информацию из нескольких источников. Под интеграцией понимается не только совместное физическое хранение данных, но и их предметное, согласованное объединение; очистку и выверку при их формировании; соблюдение технологических особенностей и т.д.

·Историчность и стабильность: OLTP-системы оперируют с актуальными данными, срок применения и хранения которых обычно не превышает величины текущего бизнес-периода (полугода-год), в то время как информационное хранилище данных нацелено на долговременное хранение информации в течении 10-15 лет. Стабильность означает, что фактическая информация в хранилище данных не обновляется и не удаляется, а только специальным образом адаптируется к изменениям бизнес-атрибутов. Таким образом, появляется возможность осуществлять исторический анализ информации.

·Независимость: выделенность информационного хранилища существенно снижает нагрузку на OLTP-системы со стороны аналитических приложений, тем самым производительность существующих систем не ухудшается, а на практике происходит уменьшение времени отклика и улучшение доступности систем.

Таким образом, хранилище данных функционирует по следующему сценарию. По заданному регламенту в него собираются данные из различных источников - баз данных систем оперативной обработки. В хранилище поддерживается хронология: наравне с текущими хранятся исторические данные с указанием времени, к которому они относятся. В результате необходимые доступные данные об объекте управления собираются в одном месте, приводятся к единому формату, согласовываются и, в ряде случаев, агрегируются до минимально требуемого уровня обобщения.

А на основе хранилища данных уже возможно составление отчетности для руководства, анализ данных с помощью OLAP-технологий и интеллектуальный анализ данных (Data Mining).

Сервис отчётности СППР помогает организации справиться с созданием всевозможных информационных отчетов, справок, документов, сводных ведомостей и пр., особенно когда число выпускаемых отчетов велико и формы отчётов часто меняются. Средства СППР, автоматизируя выпуск отчётов, позволяют перевести их хранение в электронный вид и распространять по корпоративной сети между служащими компании.

Наряду с большими корпоративными хранилищами данных широкое применение находят также витрины данных (Data Mart). Под витриной данных понимается небольшое специализированное хранилище для некоторой узкой предметной области, ориентированное на хранение данных, связанных одной бизнес- тематикой. Проект по созданию витрины данных требует меньших вложений и выполняется в очень короткие сроки. Таких витрин данных может быть несколько, скажем витрина данных по доходам для бухгалтерии компании и витрина данных по клиентам для маркетингового отдела компании.

1.4 OLAP-технологии

Взаимодействуя с OLAP-системой, пользователь сможет осуществлять гибкий просмотр информации, получать произвольные срезы данных, и выполнять аналитические операции детализации, свертки, сквозного распределения, сравнения во времени. Вся работа с OLAP-системой происходит в терминах предметной области. В основе концепции оперативной аналитической обработки (OLAP) лежит многомерное представление данных.

Термин OLAP ввел E. F. Codd в 1993 году. В своей статье он рассмотрел недостатки реляционной модели, в первую очередь невозможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом», и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

По Кодду, многомерное концептуальное представление (multi-dimensional conceptual view) является наиболее естественным взглядом управляющего персонала на объект управления. Оно представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям данных определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению. Так, измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения «предприятие - подразделение - отдел - служащий». Измерение «Время» может даже включать два направления консолидации - «год - квартал - месяц - день» и «неделя - день», поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений. Операция спуска (drilling down) соответствует движению от высших ступеней консолидации к низшим; напротив, операция подъема (rolling up) означает движение от низших уровней к высшим.

1.5 Интеллектуальный анализ данных

Наибольший интерес в СППР представляет интеллектуальный анализ данных, так как он позволяет провести наиболее полный и глубокий анализ проблемы, дает возможность обнаружить скрытые взаимосвязи, принять наиболее обоснованное решение. Современный уровень развития аппаратных и программных средств с некоторых пор сделал возможным повсеместное ведение баз данных оперативной информации на разных уровнях управления. В процессе своей деятельности промышленные предприятия, корпорации, ведомственные структуры, органы государственной власти и местного самоуправления накопили большие объемы данных. Они хранят в себе большие потенциальные возможности по извлечению полезной аналитической информации, на основе которой можно выявлять скрытые тенденции, строить стратегию развития, находить новые решения.

Интеллектуальный анализ данных, ИАД (Data Mining) - это процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). При этом накопленные сведения автоматически обобщаются до информации, которая может быть охарактеризована как знания.

В общем случае процесс ИАД состоит из трёх стадий:

.выявление закономерностей;

.использование выявленных закономерностей для предсказания неизвестных значений (прогностическое моделирование);

.анализ исключений, предназначенный для выявления и толкования аномалий в найденных закономерностях.

Новыми компьютерными технологиями, образующими ИАД являются экспертные и интеллектуальные системы, методы искусственного интеллекта, базы знаний, базы данных, компьютерное моделирование, нейронные сети, нечеткие системы. Современные технологии ИАД позволяют создавать новое знание, выявляя скрытые закономерности, прогнозируя будущее состояние систем. Основным методом моделирования социально-экономического развития города является метод имитационного моделирования, который позволяет исследовать городскую систему с помощью экспериментального подхода. Это дает возможность на модели проиграть различные стратегии развития, сравнить альтернативы, учесть влияние многих факторов, в том числе с элементами неопределенности.

Построенная в данной работе модель относится именно к такому классу систем. На ее основе органы местного самоуправления стратегического и тактического уровней получают возможность проанализировать динамику развития сложной социально-экономической городской системы, выявить неочевидные на первый взгляд взаимосвязи, сравнить различные альтернативы, проанализировать аномалии и принять наиболее обоснованное решение.

Перспективно применение в СППР комбинированных методов принятия решений в сочетании с методами искусственного интеллекта и компьютерным моделированием, различные имитационно-оптимизационные процедуры, принятие решений в сочетании с экспертными процедурами.

1.6 Классификации СППР

По взаимодействию с пользователем выделяют три вида СППР:

·пассивные помогают в процессе принятия решений, но не могут выдвинуть конкретного предложения;

·активные непосредственно участвуют в разработке правильного решения;

·кооперативные предполагают взаимодействие СППР с пользователем. Выдвинутое системой предложение пользователь может доработать, усовершенствовать, а затем отправить обратно в систему для проверки. После этого предложение вновь представляется пользователю, и так до тех пор, пока он не одобрит решение.

По способу поддержки различают:

·модельно-ориентированные СППР, используют в работе доступ к статистическим, финансовым или иным моделям;

·СППР, основанные на коммуникациях, поддерживают работу двух и более пользователей, занимающихся общей задачей;

·СППР, ориентированные на данные, имеют доступ к временным рядам организации. Они используют в работе не только внутренние, но и внешние данные;

·СППР, ориентированные на документы, манипулируют неструктурированной информацией, заключенной в различных электронных форматах;

·СППР, ориентированные на знания, предоставляют специализированные решения проблем, основанные на фактах.

По сфере использования выделяют:

·Общесистемные - работают с большими СХД и применяются многими пользователями.

По архитектуре и принципу работы различают:

·Функциональные СППР.

Являются наиболее простыми с точки зрения архитектуры. Они распространены в организациях, не ставящих перед собой глобальных задач и имеющих невысокий уровень развития информационных технологий. Отличительной особенностью функциональных СППР является то, что анализу подвергаются данные, содержащиеся в файлах операционных систем. Преимуществами подобных СППР являются компактность из-за использования одной платформы и оперативность в связи с отсутствием необходимости перегружать данные в специализированную систему. Из недостатков можно отметить следующие: сужение круга вопросов, решаемых с помощью системы, снижение качества данных из-за отсутствия этапа их очистки, увеличение нагрузки на операционную систему с потенциальной возможностью прекращения ее работы.

·СППР, использующие независимые витрины данных.

Применяются в крупных организациях, имеющих несколько подразделений, в том числе отделы информационных технологий. Каждая конкретная витрина данных создается для решения определенных задач и ориентирована на отдельный круг пользователей. Это значительно повышает производительность системы. Внедрение подобных структур достаточно просто. Из отрицательных моментов можно отметить то, что данные многократно вводятся в различные витрины, поэтому могут дублироваться. Это повышает затраты на хранение информации и усложняет процедуру унификации. Наполнение витрин данных достаточно сложно в связи с тем, что приходится использовать многочисленные источники. Отсутствует единая картина бизнеса организации, вследствие того что нет окончательной консолидации данных.

·СППР на основе двухуровневого хранилища данных.

Используется в крупных компаниях, данные которых консолидированы в единую систему. Определения и способы обработки информации в данном случае унифицированы. На обеспечение нормальной работы подобной СППР требуется выделить специализированную команду, которая будет ее обслуживать. Такая архитектура СППР лишена недостатков предыдущей, но в ней нет возможности структурировать данные для отдельных групп пользователей, а также ограничивать доступ к информации. Могут возникнуть трудности с производительностью системы.

·СППР на основе трехуровневого хранилища данных.

Такие СППР применяют хранилище данных, из которого формируются витрины данных, используемые группами пользователей, решающих сходные задачи. Таким образом, обеспечивается доступ, как к конкретным структурированным данным, так и к единой консолидированной информации. Наполнение витрин данных упрощается ввиду использования проверенных и очищенных данных, находящихся в едином источнике.

Имеется корпоративная модель данных. Такие СППР отличает гарантированная производительность. Но существует избыточность данных, которая ведет к росту требований на их хранение. Кроме того, необходимо согласовать подобную архитектуру с множеством областей, имеющих потенциально различные запросы.

В зависимости от функционального наполнения интерфейса системы выделяют два основных типа СППР: EIS и DSS.(Execution Information System) - информационные системы руководства предприятия. Эти системы ориентированы на неподготовленных пользователей, имеют упрощенный интерфейс, базовый набор предлагаемых возможностей, фиксированные формы представления информации. EIS-системы рисуют общую наглядную картину текущего состояния бизнес-показателей работы компании и тенденции их развития, с возможностью углубления рассматриваемой информации до уровня крупных объектов компании. EIS-системы - та реальная отдача, которую видит руководство компании от внедрения технологий СППР.(Desicion Support System)7 - полнофункциональные системы анализа и исследования данных, рассчитанные на подготовленных пользователей, имеющих знания как в части предметной области исследования, так и в части компьютерной грамотности. Обычно для реализации DSS-систем (при наличии данных) достаточно установки и настройки специализированного ПО поставщиков решений по OLAP-системам и Data Mining.

Такое деление систем на два типа не означает, что построение СППР всегда предполагает реализацию только одного из этих типов. EIS и DSS могут функционировать параллельно, разделяя общие данные и/или сервисы, предоставляя свою функциональность как высшему руководству, так и специалистам аналитических отделов компаний.

1.7 Области применения

Телекоммуникации

Телекоммуникационные компании используют СППР для подготовки и принятия комплекса решений, направленных на сохранение своих клиентов и минимизацию их оттока в другие компании. СППР позволяют компаниям более результативно проводить свои маркетинговые программы, вести более привлекательную тарификацию своих услуг.

Анализ записей с характеристиками вызовов позволяет выявлять категории клиентов с похожими стереотипами поведения, с тем чтобы дифференцировано подходить к привлечению клиентов той или иной категории.

Есть категории клиентов, которые постоянно меняют провайдеров, реагируя на те или иные рекламные компании. СППР позволяют выявить наиболее характерные признаки «стабильных» клиентов, т.е. клиентов, длительное время остающихся верными одной компании, давая возможность ориентировать свою маркетинговую политику на удержание именно этой категории клиентов.

Банковское дело

СППР используются для более качественного мониторинга различных аспектов банковской деятельности, таких как обслуживание кредитных карт, займов, инвестиций и так далее, что позволяет значительно повысить эффективность работы.

Выявление случаев мошенничества, оценка риска кредитования, прогнозирование изменений клиентуры - области применения СППР и методов добычи данных. Классификация клиентов, выделение групп клиентов со сходными потребностями позволяет проводить целенаправленную маркетинговую политику, предоставляя более привлекательные наборы услуг той или иной категории клиентов.

Страхование

Набор применений СППР в страховом бизнесе можно назвать классическим - это выявление потенциальных случаев мошенничества, анализ риска, классификация клиентов.

Обнаружение определенных стереотипов в заявлениях о выплате страхового возмещения, в случае больших сумм, позволяет сократить число случаев мошенничества в будущем.

Анализируя характерные признаки случаев выплат по страховым обязательствам, страховые компании могут уменьшить свои потери. Полученные данные приведут, например, к пересмотру системы скидок для клиентов, подпадающих под выявленные признаки.

Классификация клиентов дает возможность выявить наиболее выгодные категории клиентов, чтобы точнее ориентировать существующий набор услуг и вводить новые услуги.

Розничная торговля

Торговые компании используют технологии СППР для решения таких задач, как планирование закупок и хранения, анализ совместных покупок, поиск шаблонов поведения во времени.

Анализ данных о количестве покупок и наличии товара на складе в течение некоторого периода времени позволяет планировать закупку товаров, например, в ответ на сезонные колебания спроса на товар.

Часто, покупая какой либо товар покупатель приобретает вместе с ним и другой товар. Выявление групп таких товаров позволяет, например, помещать их на соседних полках, с тем, чтобы повысить вероятность их совместной покупки.

Поиск шаблонов поведения во времени дает ответ на вопрос «Если сегодня покупатель приобрел один товар, то через какое время он купит другой товар?». Например, приобретая фотоаппарат, покупатель, вероятно, в ближайшем будущем станет приобретать пленку, пользоваться услугами по проявке и печати.

Медицина

Известно много экспертных систем для постановки медицинских диагнозов. Они построены главным образом на основе правил, описывающих сочетания различных симптомов различных заболеваний. С помощью таких правил узнают не только, чем болен пациент, но и как нужно его лечить. Правила помогают выбирать средства медикаментозного воздействия, определять показания - противопоказания, ориентироваться в лечебных процедурах, создавать условия наиболее эффективного лечения, предсказывать исходы назначенного курса лечения и т. п. Технологии Data Mining позволяют обнаруживать в медицинских данных шаблоны, составляющие основу указанных правил.

Молекулярная генетика и генная инженерия

Пожалуй, наиболее остро и вместе с тем четко задача обнаружения закономерностей в экспериментальных данных стоит в молекулярной генетике и генной инженерии. Здесь она формулируется как определение так называемых маркеров, под которыми понимают генетические коды, контролирующие те или иные фенотипические признаки живого организма. Такие коды могут содержать сотни, тысячи и более связанных элементов.

На развитие генетических исследований выделяются большие средства. В последнее время в данной области возник особый интерес к применению методов Data Mining. Известно несколько крупных фирм, специализирующихся на применении этих методов для расшифровки генома человека и растений.

Прикладная химия

Методы Data Mining находят широкое применение в прикладной химии (органической и неорганической). Здесь нередко возникает вопрос о выяснении особенностей химического строения тех или иных соединений, определяющих их свойства. Особенно актуальна такая задача при анализе сложных химических соединений, описание которых включает сотни и тысячи структурных элементов и их связей.

1.8 Рынок СППР

На рынке СППР компании предлагают следующие виды услуг по созданию систем поддержки принятия решений:

·Реализация пилот-проектов по СППР-системам, с целью демонстрации руководству Заказчика качественного потенциала аналитических приложений.

·Создание совместно с Заказчиком полнофункциональных СППР-систем, включая хранилище данных и средства Business Intelligence.

·Проектирование архитектуры хранилища данных, включая структуры хранения и процессы управления.

·Создание «витрин данных» для выделенной предметной области.

·Установка и настройка средств OLAP и Business Intelligence; их адаптация к требованиям Заказчика.

·Анализ инструментов статистического анализа и «добычи данных» для выбора программных продуктов под архитектуру и потребности Заказчика.

·Интеграция систем СППР в корпоративные интранет-сети Заказчика, автоматизация электронного обмена аналитическими документами между пользователями хранилища.

·Разработка Информационных Систем Руководителя (EIS) под требуемую функциональность.

·Услуги по интеграции баз данных в единую среду хранения информации

·Обучение специалистов Заказчика технологиям хранилищ данных и аналитических систем, а также работе с необходимыми программными продуктами.

·Оказание консалтинговых услуг Заказчику на всех стадиях проектирования и эксплуатации хранилищ данных и аналитических систем.

·Комплексные проекты создания/модернизации вычислительной инфраструктуры, обеспечивающей функционирование СППР: решения любого масштаба, от локальных систем до систем масштаба предприятия/концерна/отрасли.

1.9 Оценка системы поддержки принятия решений (СПРР)

Критерии для оценки СППР. Система должна эффективно управлять доходами и риском при любых рыночных условиях, генерируя эффективные сигналы входа-выхода на рынок. При этом частота проводимых операций должна быть умеренной, учитывающей операционные затраты, комиссионные, потери на спреде и т. д. Сложность построения не должна отпугивать. Большинство отвергающих численные методы в пользу своей "интуиции" получают в итоге результаты ниже среднего.

Естественно важной характеристикой в оценке системы является суммарная (итоговая) прибыль. При высоких операционных затратах важное значение приобретает такая характеристика как прибыль на операцию. Точность решений (процентная), рассчитываемая как отношение числа прибыльных операций к общему числу операций, является популярной характеристикой для многих трейдеров, хотя ее важность переоценена. Дело в том, что многие эффективные системы чаще принимают ошибочные решения, чем верные, тогда как многие бесприбыльные (или почти бесприбыльные) системы чаще принимают верные решения.

Максимальные потери собственных средств являются важной характеристикой для измерения риска стратегий используемых системой. Системы подверженные периодическим крупным потерям не могут рассматриваться как пригодные к использованию, даже если, в конце концов, они дают достаточную итоговую прибыль. При этом под максимальными потерями имеется в виду не просто самая большая сумма потерь от последовательности убыточных операций, а максимальное снижение капитала в течение рассматриваемого периода. Во время такого снижения последовательность убыточных операций может прерываться отдельными прибыльными операциями, не способными изменить общий убыточный характер периода неэффективности системы. Основная характеристика эффективности системы рассчитывается как отношение итоговой прибыли к величине снижения капитала в период максимальной неэффективности системы и обычно называется отношением доход/риск. Существует также множество других оценок эффективности системы, иногда довольно сложных, требующих большого объема статистических расчетов, однако в большинстве случаев оказываются достаточными приведенные простые характеристики. Следует заметить, что при оценке системы можно воспользоваться критериями, которые рекомендует классическая теория управления портфелем.

Оптимизация системы заключается в поиске лучшей формулы для индикатора - лучшей в смысле получения с ее помощью максимальной и/или наиболее устойчивой прибыли по данным, собранным в течение длительного периода времени. Такая оптимизация внутренне противоречива. Ее критики немедленно укажут на то, что поведение будущих цен может отличаться от их поведения в прошлом. Сторонники такой оптимизации должны быть убеждены в существовании определенных закономерностей, устойчивости в поведении цен, не меняющегося или незначительно меняющегося с течением времени.

Для проверки действенности того, что используемые в техническом анализе правила дают устойчивую прибыль в будущем, будучи сами рассчитаны по прошлым данным, применяют следующий простой метод тестирования (так называемое слепое моделирование). Сначала оптимизируют решающее правило по прошлым данным, а потом проверяют его на более поздних (недавних) данных. Таким образом можно определить, насколько хорошо вообще можно прогнозировать будущее по прошлым данным с помощью заданного правила. Если индикатор с оптимальными параметрами дает хорошие результаты на более поздних данных, можно надеяться, что он будет хорошо работать и в будущем.

При переоценке параметров системы следует переходить к новой системе, только если полученное "улучшение" статистически значимо.

Роберт Пеллетьер рекомендует при построении решающих правил ограничивать число параметров, т. к. их увеличение увеличивает число степеней свободы системы. Кроме того между ними могут существовать связи, т. е. они могут оказаться статистически зависимыми, что обычно видно по коэффициенту их взаимной корреляции. Пеллетьер считает, что хорошая система должна содержать не более, чем 2-5 параметров.

Выборка для проверки индикатора должна быть достаточно большая, чтобы на выбранный период приходилось не менее 30 сигналов. При этом период должен включать в себя целое число полных длительных (низкочастотных) циклов, чтобы ограничить влияние смещений в направлении продаж или покупок. Так, например, для известного 4-х летнего цикла фондового рынка анализ должен производиться на данных не менее чем за 8 лет.

организационный банк интеллектуальный данные

Глава 2. Практика реализации СППР на примере территориальных учреждений Банка России

1 Формулирование целей и задач исследования, характеристика исследуемого объекта

В настоящее время Центральный Банк Российской Федерации (далее Банк России) является ключевым регулятором банковской системы России и во многом является гарантом ее стабильности и устойчивости экономики. Система Банка России имеет сложную организационную структуру - центральный аппарат (далее ЦА), территориальные учреждения (далее ТУ), и насчитывает более 80 тыс. сотрудников. В свою очередь территориальные учреждения имеют в своем подчинении сеть расчетно-кассовых центров и другие подразделения, обеспечивающие деятельность ТУ.Наличие сложной организационной структуры определяет сложность системы управления Банка России, которая охватывает два уровня - ТУ и ЦА. В настоящее время для Банка России актуальным является решение следующих основных задач: общее сокращение расходов, стандартизация деятельности территориальных учреждений, совершенствование системы управления территориальными учреждениями.

В качестве основного инструмента для выполнения указанных задач рассматривается процессный подход к управлению, эксперимент по внедрению которого в Банке России начался еще в 2002 году. Процессный подход является превалирующим подходом к построению гибкой и эффективной системы управления, получившим в последние 10-15 лет широкое распространение в мировой практике. Процессный подход предполагает четкое формулирование целей и стратегии деятельности, описание деятельности в виде совокупности взаимосвязанных процессов, имеющих на выходе конкретные результаты, четкое распределение ответственности между всеми участниками процессов.

Как показывает мировая практика, эффективное применение процессного подхода во многом определяется наличием информационно-вычислительной системы, которая формирует и предоставляет необходимую для принятия решений информацию. С помощью такой системы на уровне ТУ Банка России можно было бы описывать и контролировать исполнение процессов, оценивать их стоимость, рассчитывать реальную нагрузку, проводить обоснованную оценку эффективности процессов, сотрудников, подразделений и т.п. На уровне ЦА Банка России система позволила бы обеспечить сравнение ТУ по различным показателям, накапливаемым в ходе работы, типизацию ТУ, описание стандартов процессов, их тиражирование в ТУ и решение ряда других задач.

Все вышесказанное определяет актуальность темы данной главы, посвященной разработке методических, математических и программно-инструментальных подходов к созданию системы поддержки принятия решений в сфере управления деятельностью территориальных учреждений Банка России на основе процессного подхода (далее Система, СППР «Процессное управление»).

Целью данной работы является разработка комплексного методического, математического, информационного и программно-инструментального обеспечения системы поддержки принятия решений в задачах управления деятельностью территориальных учреждений Банка России, включая уровень ТУ и центрального аппарата.

2 Общий обзор и описание работы

2.1 Разработка новой концепции СППР в управлении деятельностью территориальных учреждений Банка России

Была проанализирована специфика Банка России, которая состоит в наличии сложной организационной структуры, вертикальной двухуровневой системы управления территориальными учреждениями, четкой регламентации деятельности на основе масштабной нормативной базы, сложности документооборота, особенностях финансового управления, информатизации и требований к обеспечению информационной безопасности. В результате было установлено, что существующие продукты не в полной мере подходят для решения задач управления территориальными учреждениями Банка России.

Исследование специфики Банка России и анализ основных задач в управлении деятельностью ТУ позволили сформулировать следующие концептуальные принципы построения СППР:

) Двухуровневая структура. Разрабатываемая СППР должна функционировать на двух уровнях - ТУ (региональный) и ЦА (федеральный). На региональном уровне СППР поддерживает управление деятельностью ТУ на основе процессного подхода, на федеральном уровне обеспечивается сбор информации о деятельности со всех ТУ, централизованное хранение и анализ этой информации, классификация ТУ, формирование стандартов;

) Полный цикл управления на основе процессного подхода. Для эффективного и непрерывного совершенствования деятельности важной характеристикой СППР является обеспечение полного цикла управления на основе процессного подхода, который предполагает итерационное выполнение процедур описания процессов, мониторинга и контроля исполнения, анализа процессов, реинжиниринга.

С учетом двухуровневой структуры системы цикл управления представлен в следующем виде (рис. 2):

Рис. 2. Цикл поддержки управления в СППР

)Интеграция подходов и технологий. С целью наиболее эффективного решения задач совершенствования деятельности ТУ в создаваемой СППР необходимо интегрировать подходы и технологии управления бизнес-процессами (BPMS), управления эффективностью (CPM) и бизнес-аналитики (BI). Указанные подходы должны быть реализованы на единых архитектурных принципах и функционировать в рамках единой информационной и программно-технологической инфраструктуры;

)Поддержка стандартов необходима для решения задач стандартизации деятельности ТУ. На федеральном уровне - разработка, отладка, анализ стандартов процессов и т.д.; на региональном уровне - «наложение» стандартов на существующие процессы;

)Интеграция процессов в хранилище данных. Системы класса BPMS являются транзакционными и не предполагают наличие хранилища данных. В Банке России требуется не только организовать управление процессами, но и обеспечить их всесторонний анализ - динамический, сравнительный, структурный и др. Поэтому информация о деятельности должна накапливаться в хранилищах данных каждого ТУ, часть данных будет передаваться на федеральный уровень (в централизованное хранилище);

)Развитие методологической базы для анализа. Для более полного и эффективного решения задач анализа информации о деятельности ТУ необходимо развитие методологической и инструментальной базы по следующим направлениям: расчет стоимости процессов, оценка длительности выполнения процессов, анализ организационной структуры, управление эффективностью;

)Взаимодействие с ТПК. СППР должна взаимодействовать с типовыми программными комплексами (ТПК), функционирующими в территориальных учреждениях. Взаимодействие организуется с целью: получения исходных данных (например, данные о расходах ТУ); получения актуальной нормативно-справочной информации; получения данных об исполнении процессов. С учетом указанных принципов разработана концептуальная модель системы, охватывающая федеральный и региональный уровень управления (рис. 3):

Рис. 3. Концептуальная модель СППР в управлении деятельностью территориальных учреждений Банка России

Представленная концептуальная модель наиболее полно отвечает решению управленческих задач Банка России и включает следующие компоненты:

·Системы регионального уровня (в каждом территориальном учреждении). СППР регионального уровня является тиражируемой и предоставляет единые для всех ТУ функциональные возможности. Информация о деятельности ТУ аккумулируется в хранилище данных, над которым функционируют аналитические BI-инструменты.

·Система федерального уровня (в центральном аппарате). СППР федерального уровня является интегрирующим компонентом, предполагающим централизованное хранение и обработку информации о деятельности всех ТУ и отличные от системы регионального уровня функциональные возможности. В системе федерального уровня формируются данные (стандарты процессов, нормативы и др.), которые тиражируются в СППР регионального уровня.

·Внешние источники информации в основном обеспечивают данными СППР регионального уровня, к ним относятся различные программные комплексы, функционирующие в территориальных учреждениях. Внешние источники могут рассматриваться как внешние компоненты СППР.

Поскольку система федерального уровня во многом основывается на данных, передаваемых из систем регионального уровня, то в первую очередь необходимо разработать информационное, математическое и инструментальное обеспечение системы регионального уровня как основы целостной СППР Банка России. При этом следует отметить, что разработанные методы и инструменты будут использованы и при построении системы федерального уровня. В ходе исследования разработана структура СППР регионального уровня (рис. 4), при этом учитывались масштабы ТУ, многообразие выполняемых функций и процессов, факторы сложившейся управленческой практики, особенности текущей автоматизации.

Рис. 4. Структура СППР регионального уровня Банка России

2.2.2 Описание функциональных подсистем

В состав системы входят функциональные подсистемы, обеспечивающие интерфейсы работы пользователей и реализующие бизнес-функции, и технологические подсистемы, которые обеспечивают работу функциональных подсистем на основе унифицированных механизмов управления данными и централизованных метаданных. Работа всех подсистем осуществляется под управлением подсистемы администрирования и информационной безопасности, которая обеспечивает должный уровень защиты данных от несанкционированного доступа в соответствии с требованиями Банка России. В ходе исследования с учетом специфики Банка России разработаны и обоснованы требования к информационному и инструментальному обеспечению функциональных подсистем.

Подсистема описания процессов предназначена для формализованного описания деятельности в виде совокупности взаимосвязанных процессов с учетом особенностей Банка России. Для моделирования процессов в системе использованы стандарты IDEF0 и IDEF3, дополненный рядом дополнительных конструкций: контрольные операции, возвратные переходы, ссылки на другие процессы, вспомогательные процессы, точки начала и завершения процесса. При формировании информационной модели описания процессов ТУ учитывалась специфика Банка России и требования стандартов, а также следующие принципы:

·Поддержка версионности подразумевает ведение хронологии всех изменений в описании процессов (изменения объектов фиксируются в виде версий, упорядоченных по дате). За счет этого можно получить модель деятельности ТУ по состоянию на любую дату;

·Поддержка моделирования изменений обеспечивается за счет ведения временных версий объектов, которые можно утверждать или отменять по мере необходимости;

·Настраиваемость моделей процессов предполагает расширение набора атрибутов моделей процессов, ввод новых объектов и увязку с существующими.

С учетом изложенных принципов и особенностей в ходе исследования разработана информационная модель процессов и объектов их окружения (рис. 5).

Рис. 5. Взаимосвязь основных объектов окружения процессов.

На базе сформированной информационной модели подсистема описания процессов позволяет решать следующие основные задачи:

·формирование целостной формализованной модели деятельности ТУ;

·поддержка информации о деятельности в актуальном состоянии;

·формирование отчетов и справок о документировании деятельности ТУ.

Подсистема контроля исполнения процессов обеспечивает исполнение формализованных процессов, осуществляя маршрутизацию заданий между исполнителями в соответствии с описанием, контроль соблюдения сроков и эффективности выполнения, трансформацию данных об исполнении процессов из внешних источников в единый унифицированный формат.0

В результате исследования разработан жизненный цикл процессов и операций (рис. 6), который в совокупности с нотацией описания процессов обеспечивают решение следующих задач:

·организация исполнений процессов;

·мониторинг и управление ходом исполнения процессов;

·организация контроля исполнения процессов в критичных точках;

·формирование аналитических справок для руководителей различного уровня ТУ (руководители секторов, отделов, управлений, высшее руководство).

Рис. 6. Жизненный цикл исполнения процессов

Подсистема стоимости процессов предназначена для расчета стоимостных характеристик процессов и их анализа в различных разрезах, предоставляет средства для детального анализа стоимостных характеристик процессов, балансировки, сравнительного анализа, проведения различных вариантов расчета.

Подсистема анализа деятельности реализует поддержку анализа деятельности ТУ по различным аспектам - эффективность, затраты, персонал, процессы и др., при этом производится сбор и структурирование данных из внешних источников и других подсистем. Аналитическая подсистема строится на основе методологии CPM с учетом задач Банка России и предоставляет набор аналитических приложений и инструментов для решения следующих задач:

.Управление системой стратегических целей, задач и показателей (с учетом целевых ориентиров, определяемых на федеральном уровне Банка России);

.Поддержка принятия решений в сфере управления персоналом и организационной структурой ТУ;

.Мониторинг и анализ показателей деятельности.

Система стратегических целей, задач и показателей представляет собой систему сбалансированных показателей (ССП) и ключевых показателей эффективности, которые могут задаваться для процессов, подразделений, сотрудников и т.д. Все цели, задачи и показатели носят хронологический характер. Источником данных для ССП является хранилище данных. Целевые значения показателей могут задаваться несколькими сценариями, для оценки степени достижения целей и задач показателям могут быть присвоены весовые коэффициенты. На основе сопоставления целевых и фактических значений производится мониторинг и анализ достижения целей.

Поддержка принятия решений в управлении персоналом включает аналитические приложения для анализа организационной структуры, анализа персонала с точки зрения исполнительской дисциплины, результативности и основных показателей исполнения процессов, балансировки и распределения функциональных обязанностей.

Мониторинг и анализ показателей деятельности производится с помощью BI-инструментов на основе хранилища, при этом обеспечивается возможность сопоставления разнородных показателей и различные виды анализа (динамический, структурный, сравнительный, кластерный, ранжирование и др.).

2.2.3 Разработка СППР на уровне ТУ, реализующей методические и инструментальные решения

В процессе разработки СППР проводился анализ требований к построению системы, разрабатывалась логическая и физическая структура данных, обосновывались основные принципы построения системы, решались задачи выбора информационных технологий для реализации системы.

В структуре системы выделены функциональные подсистемы, реализующие бизнес-логику и интерфейс пользователя, и технологические подсистемы, которые обеспечивают работу функциональных подсистем на основе унифицированных механизмов управления данными и централизованных метаданных.

Для реализации системы выбраны следующие информационные технологии:

·в качестве основы для хранения информации - система управления реляционными базами данных Oracle версии 9i;

·в качестве программно-инструментальной среды разработки - аналитический комплекс «Прогноз-5», ориентированный на разработку информационно-аналитических систем и систем поддержки принятия решений в различных областях экономики;

·для разработки web-компоненты - интегрированная среда Microsoft Visual Studio 2005 и платформа ASP.NET.

В ходе создания СППР разрабатывается комплекс программно-технологических решений на основе единых архитектурных принципов в целях наиболее оптимального и надежного функционирования. При разработке процедур управления сложной базой данных, включающей транзакционный и аналитический сегменты, разработаны и применены следующие решения:

·Обеспечение согласованности данных транзакционного и аналитического сегментов БД, для этого разработана система взаимосвязанных классов, ориентированная на использование унифицированного ядра обработки транзакций, которое основано на использовании метаданных СУБД Oracle. На уровне таблиц контроль целостности данных обеспечивается средствами СУБД для повышения надежности функционирования (рис. 7):

Рис. 7. Схема управления согласованностью данных СППР.

·Поддержка версионности объектов с сохранением контроля целостности на уровне СУБД. Для этого каждый объект хранится в двух таблицах: таблица объектов и таблица версий объектов;

·Масштабируемость БД на уровне атрибутов и объектов с контролем целостности. Для дополнительных атрибутов целостность контролируется на уровне триггеров, при создании новых объектов в таблицах автоматически создаются унифицированные триггеры контроля целостности;

·Оптимизация извлечения и записи в БД при больших объемах данных. После создания физической структуры была проведена ее индексация, для таблиц хранилища данных были применены средства формирования Partitions СУБД Oracle.

Источниками данных для первичного наполнения СППР и последующей актуализации могут являться данные из эксплуатируемых в ТУ типовых программных комплексов: Системы внутрихозяйственной деятельности (ВХД), Системы автоматизации документооборота, Систем автоматизации и др. СППР позволяет загрузить описания процессов из файлов формата MS Word и Excel, что важно для территориальных учреждений, имеющих проекты моделей процессов «на бумаге».

Разработанная СППР используется в промышленном режиме в Национальном банке Республики Башкортостан более чем на 300 рабочих местах руководителей и специалистов для описания процессов, организации и мониторинга исполнения процессов, обоснования изменений организационной структуры, анализа деятельности. В системе описано порядка 980 процессов, примерно 730 из них утверждено, около 200 процессов регулярно запускаются в промышленном режиме.

2.3Выводы и результаты применения данной СППР

Получены следующие основные результаты и выводы:

На основе полученных выводов представлена концепция комплексной системы поддержки принятия решений в управлении деятельностью ТУ, ориентированной на интеграцию подходов BPMS, BI и CPM, в которой разработанные автором методы и алгоритмы строятся на основе единой информационной и инструментальной среды. Концепция объединяет в себе как новые, так и известные ранее методы по проведению мониторинга и анализа деятельности ТУ на основе процессного подхода, адаптированные к специфике Банка России.

Создана и апробирована в конкретных ТУ Банка России система поддержки принятия решений в сфере управления деятельностью территориального учреждения на региональном уровне. Применение СППР в ТУ позволяет повысить управляемость деятельности на основе процессного подхода, улучшить систему внутреннего контроля, оптимизировать имеющуюся организационную структуру, сформировать хранилище по показателям деятельности.

По итогам внедрения системы удалось достичь следующих результатов (как следует из отчетов руководству Банка России):

·улучшена система внутреннего контроля деятельности;

·усовершенствованы технологии выполнения эмиссионных и кассовых операций и уменьшены трудозатраты (по некоторым операциям до 10%);

·проведена централизация функций, осуществляемых Расчетно-кассовыми центрами (13 функций по 9 процессам);

·управление наличного денежного обращения преобразовано в два самостоятельных отдела;

·перераспределены должности между отделами внутри управления безопасности и защиты информации;

·проведено сокращение штата в хозяйственно-эксплуатационном управлении; готовятся предложения по оптимизации документооборота.

Заключение

На сегодняшний день не существует признанного лидера в области производства программного обеспечения для построения систем СППР. Ни одна из компаний не производит готового решения, что называется «из коробки», пригодного к непосредственному использованию в производственном процессе заказчика. Создание СППР всегда включает в себя стадии анализа данных и бизнес-процессов заказчика, проектирования структур хранилища с учетом его потребностей и технологических процессов.

Учитывая размер вовлекаемых финансовых и других ресурсов, сложность и многоэтапность проектов построения систем СППР очевидна высокая стоимость ошибок проектирования. Ошибки выбора программного обеспечения могут повлечь за собой финансовые расходы, не говоря уже об увеличении времени выполнения проекта. Ошибки проектирования структуры данных могут вести как к неприемлемым производственным характеристикам, так и стоить времени потраченного на перезагрузку данных, которое порой достигает нескольких суток. Поэтому глубоко понимая архитектуру хранилищ данных, необходимо избегать всяких ошибок, что влечет за собой значительное сокращение времени выполнения проекта и возможность получить максимальную отдачу от внедрения СППР.

Необходимо отдельно отметить, что проблемы принятия решений, а именно СППР слабо развиты в нашей стране и мало применяются на практике. Применение программ,подобной той, что описана здесь не только очень просто, но и достаточно эффективно и не требует особых знаний и капиталовложений.

Несколько десятков различных фирм выпускают продукты, способные решать те или иные задачи, возникающие в процессе проектирования и эксплуатации систем СППР. Сюда входят СУБД, средства выгрузки/трансформации/загрузки данных, инструменты для OLAP-анализа и многое другое.

Самостоятельный анализ рынка, изучение хотя бы нескольких таких средств - непростая и длительная задача.

Итак, в этой работе мы познакомились с системами поддержки принятия решений.

Во введении обоснована актуальность данной темы, приведены цель и задачи исследования, дана общая характеристика работы, выявлен предмет исследования.

В первой главе приводятся теоретические аспекты и понятия систем поддержки принятия решений, приводится подробная классификация типов СППР, изначально были раскрыты их функции. Также в этой главе мы познакомились с историей создания систем поддержки, более детально разобрали структуру СППР и основные ее элементы. Приводятся отличительные особенности систем поддержки принятия решений, а также сферы и области, в которых они могут применяться.

Выявлена методология поддержки принятия решений, а это позволяет подвести итог, что ее применение даёт возможность:

·формализовать процесс нахождения решения на основе имеющихся данных (процесс порождения вариантов решения);

·ранжировать критерии и давать критериальные оценки физическим параметрам, влияющим на решаемую проблему (возможность оценить варианты решений);

·использовать формализованные процедуры согласования при принятии коллективных решений;

·использовать формальные процедуры прогнозирования последствий принимаемых решений;

·выбирать вариант, приводящий к оптимальному решению проблемы.

Из этого следует, что с базовыми вещами и теоретической частью о системах поддержки принятия решений мы ознакомились.

Во второй главе приведена практическая реализация СППР в сфере управления деятельности организации на основе процессного подхода (на примере территориальных учреждений Банка России). Предложена концепция построения СППР «Управление деятельностью территориальных учреждений Банка России». Разработаны и обоснованы концептуальная модель СППР, функциональная структура и требования к основным компонентам. Предложен комплекс методов и инструментов для поддержки принятия решений в управлении ТУ с учетом специфики Банка России. Разработаны и обоснованы требования к информационно-аналитическому обеспечению системы с учетом актуальных задач управления территориальными учреждениями Банка России. Приведены результаты внедрения данной системы исходя из отчетов руководству Банка России.

Таким образом, мы выяснили как применяются данные системы поддержки принятия решений на практике - в нашем случае, в банковской сфере.

Применение СППР перспективно уже хотя бы потому, что любое управленческое решение субъективно, основано на политике компании, отражает основные цели организации и, что самое главное, не обязательно верно. Все это ведет к необходимости формализации процесса принятия решений и привлечения вспомогательных средств для снижения риска принятия неверного решения. Последний возрастает с накоплением информации, подлежащей обработке. Это происходит потому, что человек либо не способен обработать всю необходимую информацию для принятия решения самостоятельно, либо не способен это сделать в сроки, когда задача еще актуальна.

Список литературы

1.Веснин, В.Р. Менеджмент: Учеб.- 4-е изд., перераб. и доп.- М.: ТК Велби, 2009. - 342 с.

2.Герчикова, И.Н. Процесс принятия и реализации управленческих решений/ И.Н. Герчикова //Менеджмент в России и за рубежом, 2013. № 12. - 130 с.

.Гончаров, В. И. Менеджмент: учебное пособие / В. И. Гончаров. - Минск: Современная школа, 2010.- 255 с.

.Дробышев, А.В. Методы принятия решений. Методы Дельфи и ЭЛЕКТРА. - Методические указания к лабораторной работе по курсу "Системы поддержки принятий решений". - МГИЭМ. Сост.: И.Е.Сафонова,., К.Ю.Мишин, С.В.Цыганов: М., МГИЭМ, 2008. - 26 с.

.Евланов, А. Г. Теория и практика принятия решений. -- М.: Экономика, 2010. - 212 с.

.Коротков, Э. М. Менеджмент: учебник для бакалавров / Э. М. Коротков. Москва:Юрайт, 2012.- 85 с.

.Кривко, О.Б. Информационные технологии. М.: СОМИНТЭК. 2011. - 179 с.

.Лафта, Дж. К. Эффективность менеджмента организации. - М.: Русская деловая литература, 2009. - 320 с.

.Лафта, Дж. К. Эффективность менеджмента организации. - М.: Русская деловая литература, 2011. - 320 с.

.Макаров, С.Ф. Менеджер за работой. - М.: ФИНПРЕСС, 2009. - 155 с.

.Мескон, М. Основы менеджмента: Учебное пособие / М. Мескон, М. Альберт, Ф. Хедоури; М., 2012. - 387 с.

.Панкрухина, А.П.Теория управления: учебник / [Ю. П. Алексеев и др.]; под общей редакцией: А. Л. Гапоненко, А. П. Панкрухина. - Москва: Издательство РАГС, 2010.- 213 с.

.Пирожков, В.А. О реализации процессного подхода к управлению в виде системы поддержки принятия решений «Управление деятельностью организации» [Текст] / В.А. Пирожков // Вестник Тамбовского ун-та. Сер.: Гуманитарные науки. - 2008. - Вып. 11. - 489 с.

.Полушкин, О.А. Стратегический менеджмент: конспект лекций. - М.: ЭКСМО, 2007. - 138 с.

региональных органов власти // Реформы в России и проблемы

.Ромащенко, В.Н. Принятие решений: ситуации и советы. - Киев, 2012. - 154 с.

16.Румянцева З.П. Менеджмент организации: учебное пособие. - М.: ИНФРА-М, 2005. - 432 с.

.Сараев, А. Д., Щербина О. А. Системный анализ и современные информационные технологии //Труды Крымской Академии наук. - Симферополь: СОНАТ, 2009. - 136 с.

.Сафонова, И.Е. Методы принятия решений. Модификация метода Дельфи и метод анализа иерархий. - Методические указания к лабораторной работе по курсу "Системы поддержки принятий решений". - МГИЭМ. Сост.:. 18.И.Е Сафонова, А.В.Дробышев, К.Ю.Мишин, С.В.Цыганов: М., МГИЭМ, 2007. - 20 с.

.Сафонова, И.Е. Методы принятия решений. Метод минимального расстояния и методы МаксиМин и МаксиМакс. - Методические указания к лабораторной работе по курсу "Системы поддержки принятий решений". - МГИЭМ. Сост.:, 18.И.Е.Сафонова А.В.Дробышев, К.Ю.Мишин, С.В.Цыганов: М., 2007. - 19 с.

.Терелянский, П.В. Системы поддержки принятия решений. Опыт проектирования: монография / П.В. Терелянский; ВолгГТУ.- Волгоград, 2009. -127 с.

.Черняховская Л.Р. Поддержка принятия решений при стратегическом управлении предприятием на основе инженерий знаний / Л. Р. Черняховская и др. Уфа: АН РБ, Гилем, 2010. - 128 с.

Выделяют три типа таких инструментальных средств:

1. Средства многомерного анализа - также известные как OLAP (On-Line Analytical Processing) - программное обеспечение, которое дает пользователю возможность наблюдать данные в различных измерениях, направлениях или сечениях.

2. Инструментальные средства запросов (Query Tools) - программное обеспечение, позволяющее формировать запросы к данным по содержанию или образцу.

3. Инструментальные средства поиска данных (Data Mining Tools) - программное обеспечение, которое осуществляет автоматический поиск важных образцов (моделей), или зависимостей в данных.

Наличие в обучающей системе, построенной на основе классической DSS (Decision support system), развитых средств моделирования и советующих средств качественно меняет загрузку ЛПР в направлении интеллектуализации их деятельности. Это достигается за счет увеличения информационных потоков, проходящих через обучающую систему, являющейся неотемлемой частью МРИС. Такой прирост связан с развитием информационных технологий, которые в настоящее время дают всю больше возможностей переработки малоформализуемой информации. Развитие в математике и информатике таких направлений, как нечеткие множества, многозначные логики и др., совершенствование средств программирования и технических средств позволяет осуществлять такую обработку.

Внедрение в практику систем, построенных на основе подхода DSS характеризуется множеством проблем, в их числе слабая интеграция программных средств, обеспечивающих характерные возможности DSS. Это можно объяснить относительно малым опытом создания и использования по-настоящему развитых DSS-систем и большой стоимостью их разработки. Последний фактор связан с необходимостью обеспечения адекватности, заложенных в DSS модель для полноценного управления, а также чрезмерное усложнение системы и

одновременно необходимость развития дружественности систем, что совпадает с возможностями развития средств вычислительной техники.

Желаемые качества гибкости и адаптивности обучающей системы требуют от нее глубокой параметризации, что делает ее чрезвычайно сложной. Поэтому необходимы решения, которое позволяли бы имея основной алгоритм обучения обеспечить его индивидуальный характер. Для этого можно использовать подход, применяющийся в цепях Маркова. В каждый момент времени объем незнания не зависит от предшествующего процесса обучения. Тогда для ликвидации незнания нет необходимости возвращаться на шаг назад, но обучаемый должен иметь удобный инструментарий и необходимую информацию, чтобы разобраться с незнанием самостоятельно. Этому решению как нельзя более соответствует подход ЕPSS (Electronic perfomance support system) – использования электронных систем поддержки исполнения, обеспечивающий получение основных знаний и осуществляющий поддержку принятия решений для выработки навыков и умений.



Для EPSS характерными тенденциями по сравнению с DSS являются:

 увеличение малоформализуемого информационного потока, проходящего через ЭИС;

 более дружественный интерфейс;

 более полный учет требований пользователя, его психологических особенностей, менталитета;

 более гибкая система технологических настроек;

 более гибкая и более полная система обучения пользователя новой для него функциональной информационной технологии.

EPSS углубляет DSS делая его более комфортным для обучаемого за счет улучшения инструментария и предоставляет пользователю возможность постоянного совершенствования знаний. EPSS характеризуется совокупностью функциональной информационной технологии и технологии, которую назовем образовательной. Любая функциональная информационная технология в EPSS немыслима без добавки, которой, в нашем случае, является образовательная технология. Синтез функциональной информационной и образовательной технологий образует образовательную информационную технологию, состовляющей основу обучающей системы МРИС.

Особенно важной отличительной особенностью EPSS является системная интеграция констатирующих, моделирующих, обучающих и советующих технологий в единую систему.

Внутри обучающей системы, должен присутствовать встроенный ЕPSS блок, который оценивал бы принципиальную возможность решения, принятого обучаемым и его эффективность, а также распознавал бы сделанные ошибки и определял бы для системы в целом способы устранения их источников, т.е. методику и форму подкачки знаний, наиболее удачных для обучаемого (см. рис. 2.10).

Детализация должна осуществляться с определенным акцентом на область незнания обучаемого. Таким образом, стратегия обучения может постоянно меняться, являясь функцией психологических особенностей обучаемого (образное, логическое мышление) и суммы знаний об объекте познания, которыми обладает обучаемый.

Таким образом ЕPSS должна содержать:

1.Констатирующее программное обеспечение, то есть соответствующие данные. Например, учебный материал, примеры, случаи и т.д.

2.Моделирующее программное обеспечение, подготавливающее ответ на вопрос: – “Что будет если... ?”.

3.Советующее программное обеспечение, которое может дать ответ на вопрос “Как сделать, чтобы... ?”.

Обычно обучающая система хорошего качества меняет стратегию обучения в зависимости от контекста ответов на контрольные вопросы. При этом обучаемый следует определенному алгоритму обучения, в который заложен ряд траекторных целей на выполнение которых, всегда одних и тех же, система должна вывести любых обучаемых и распознав незнание пытаться его локализовать и ликвидировать подкачкой необходимых знаний и их закрепления. Если же этого сделать не удается система поднимается на понятие выше и действует по такому же алгоритму. Локализация же незнания сводится к его детализации. Однако направление детализации может быть различным, и это различие зависит, прежде всего, от признаков классификации понятий, которые мы закладываем в систему. Упрощенно контур обучение состоит из двух блоков. Первый блок, используя какую-либо стратегию, осуществляет дозированное представление обучаемому знаний. Это представление может происходить по линейной или сетевой схеме. По мере продвижения по графу обучения система периодически переключается на блок контроля, который может быть построен различными способами.

Стратегия обучения не меняется в зависимости от ответов, хотя правильность ответов и проверяется. В традиционных обучающих системах используется именно такая схема и на каждый вопрос предлагаются альтернативные ответы, один или несколько. Недостаток такого решения заключается в том, что необходимо очень четко, без неоднозначности сформулировать вопросы и определить ответы. Из альтернативных ответов трудно выделить смысл непонимания, хотя принципиально этот недостаток преодолим за счет увеличения числа контрольных вопросов.

Если стратегия обучения меняется, то мы можем говорить об управлении процессом обучения, которое по функциям ничем не отличается от управления любым другим объектом: учет – ответ на контрольные вопросы; анализ – распознавания содержания ответов; планирование действий системы по адаптации стратегии обучения; регулирование – предъявление очередной порции знаний, требуемого уровня и смысла.

Таким образом, EPSS является мощным средством повышения эффективности МРИС, обеспечивая индивидуальное обучение, улучшение управления системой за счет усиления функций поддержки и улучшение адаптивных свойств системы к требованиям конкретного пользователя. Развитие общества и бизнеса требует адекватного инструментария для управления. Знание тенденций и основных направлений развития информатики, позволяют выработать научно-обоснованные стратегии целенаправленного управления процессом ее развития. Глобальная информатизация общества является одной из причин его развития, поэтому вопросам взаимной адаптации и трансформации естественных структур и искусственно созданных информационных систем следует уделять самое пристальное внимание.

33. Каковы особенности, позитивные и негативные стороны

внедрения DSS-систем?

В небольшой инфраструктуре далеко не каждый процесс следует подробно описывать при помощи третьего уровня, только самые важные, порядок исполнения которых критичен с точки зрения безопасности, или же во внешних требованиях, например, стандарте PCI DSS, содержится прямое условие их подробной детализации. Во всех других случаях уровень декомпозиции должен определяться здравым смыслом.

34. Что такое заказная ИС?

Под заказными или уникальными системами обычно понимаются системы, создаваемые для конкретного предприятия, не имеющие аналогов и не подлежащие в дальнейшем тиражированию. Подобные системы используются либо для автоматизации деятельности предприятий с уникальными характеристиками, либо для решения крайне ограниченного круга специальных задач. В основном подобные системы применяются в органах государственного управления, образования, здравоохранения, военных организациях. Заказные системы, как правило, либо вообще не имеют прототипов, либо использование прототипа требует значительных его изменений, имеющих качественный характер. В этом плане разработка заказной системы по существу является НИОКР . Как любыеНИОКР , она характеризуется повышенным риском в плане получения требуемых результатов. Для снижения рисков и расходов на разработку целесообразно использовать апробированную на практике методику. Желательно, чтобы в состав методики входили следующие элементы:

· модель технологического процесса (последовательность технологических операций, требования к входной и выходной информации и результатам);

· модель процесса управления самим технологическим процессом (этапы, процессы управления качеством, результатами, требования к квалификации специалистов);

· инструментальные средства, используемые при разработке.

Одним из примеров такой методики является комплексное использование подхода CDM Advantageгм, метода управления проектами PJM и CASE-средства Designer/2000 в качестве инструментального средства корпорации Oracle .

35. Что такое уникальная ИС?

36. Что такое тиражируемая ИС?

Тиражируемая система не требует доработки со стороны разработчика, и пользователь должен принимать ее, как таковую. Например, тиражируемая информационная система (хотя она так и не воспринимается) - Microsoft BackOffice. Эта система существует сама по себе и может решать определенные корпоративные задачи, но попробуйте заcтавить Microsoft что-то в ней изменить! К корпоративным тиражируемым системам относятся также "1С:Торговля" и в меньшей степени "Экипаж". Чем выше мы поднимаемся, тем большую видим гибкость - система превращается в полузаказную. "Галактику" я уже не назову тиражируемой. Здесь необходимы этапы настройки, внедрения.

В принципе тиражируемые системы предназначены для малых предприятий. Но есть какой-то критический масштаб предприятия, начиная с которого дешевле, правильнее и быстрее пойти на затраты, связанные с доработкой ПО, чем на затраты, обусловленные необходимостью реорганизации деятельности. Маленькие компании способны "подогнать" свои бизнес-процессы под требования тиражируемых систем - у них и бизнес-процессы короткие. Более крупные так не могут.

- Какова тогда для Вас мерка - что значит "крупное предприятие"?

Крупное предприятие - это сотни документов в месяц и более пяти человек в цепочках бизнес-процессов.

Обычно еще называют количество рабочих мест в системе, но это ерунда, а не критерий. Потому что если у меня работают четыре экономиста, то для создания корпоративной системы складываются намного более сложные условия, чем при наличии сотни кассиров кассовых аппаратов.

37. Что такое система-конструктор?

С технологической (архитектурной) точки зрения система-конструктор – это программный продукт, который: включает ядро, в котором определена принципиальная модель предметной области, а также базовый набор классов (максимально абстрактных) и основных методов работы с ними; включает конфигурацию, которая представляет собой реализацию информационной системы, построенной из классов и методов ядра; включает инструментарий, позволяющий пользователю строить свой собственный вариант конфигурации

Задачи управления в каждой организации, несомненно, являются уникальными, но, как правило, для всякого конкретного вида деятельности можно выделить типовые задачи. Подробный перечень типовых испецифических задач и их взаимосвязей может стать прототипом технического задания на систему.

При анализе функциональности системы-конструктора целесообразно все требуемые функции подразделить на ряд категорий: а) функции, уже реализованные в типовых конфигурациях системы-конструктора; б) функции, не реализованные в типовых конфигурациях, но которые можно реализовать при помощи средств конфигурирования; в) функции, которые нельзя реализовать (собственными силами) без коренной переделки системы.

ИС – трансформер , реализует базовую функциональность по управлению данными, по реализации бизнес логики и предоставлению графического пользовательского интерфейса, но не имеет реализованной бизнес модели для начала эксплуатации в рамках какой-либо предметной области.

38. Что такое адаптация ИС?

39. Что такое адаптируемые ИС?

Адаптируемые системы

Проблема адаптации программного обеспечения АСУП, т. е. приспособления к условиям работы на конкретном предприятии, была осознана с самого начала работ по автоматизации управления.

Содержание и методы адаптации эволюционировали вместе с методологией создания и внедрения систем. Суть проблемы в том, что в конечном итоге каждая АСУП уникальна, но вместе с тем ей присущи и общие, типовые свойства. Любая подсистема программного обеспечения отображает обе эти стороны АСУП. В технологическом смысле адаптация программного обеспечения АСУП - это переход от базовой системы, отображающей типовые свойства системы, к окончательному решению, приспособленному для работы в данной АСУП.

Требования к адаптации и сложность их реализации существенно зависят от проблемной области, масштабов системы, степени соотношения между формализованным и неформализованным при решении задач управления.

Даже первые программы, решавшие отдельные задачи управления, создавались с учётом необходимости их настройки по параметрам. Поскольку на раннем этапе остро стоял вопрос обеспечения вычислительными мощностями, то главное внимание уделялось настройке потребностей в оперативной памяти, способам остановки при решении задач оптимизации, управлению программой для обхода программных модулей, не используемых в конкретном расчёте.

С появлением типовых решений в виде пакетов прикладных программ (ППП ) появилась необходимость в специальных процедурах предварительной генерации. Процедуры охватывали параметры, которые определяли режим функционирования программного обеспечения, требования к информационному обеспечению, условия подключения и использования внешних программ. Применение ППП как базовых систем привело к увеличению формализованной составляющей в системе управления предприятием. Усложнилась и адаптация систем к условиям предприятия. Появились подразделения эксплуатации программного обеспечения, занимавшиеся, в том числе, и вопросами адаптации программных систем. Стало очевидно, что адаптация в АСУП является не только программно-технической, но и организационной проблемой.

Интерактивные системы, сделавшие управленцев всех уровней непосредственными пользователями вычислительных систем, привели и к новому пониманию проблемы адаптации. Глубинные причины были прежними - смещение соотношения между формализованным и неформализованным в сторону формализации процесса Управления. Основная сложность заключалась в том, что формализация затронула не только типовые, но и уникальные функциональности в системе управления предприятием.

Из всего множества трудностей, проявившихся на данном этапе развития АСУП, следует остановиться на двух. Первая - организация дружественного интерфейса между пользователем и вычислительной средой. В ходе развития систем управления в арсенал средств организации интерфейса вошли меню различного вида, электронные доски и панели, диаграммы типа диаграмм Черноффа и Ишикавы, графика и многое другое. Вторая трудность носила системный характер. Прежний подход - настройка системы силами консультантов практически без участия управленцев - стал невозможен. Выяснилось, что во многих случаях оказывается неэффективной организация внедрения, при которой будущие пользователи сначала формулируют требования к системе с учётом специфики предприятия во всех деталях, а затем консультанты настраивают систему на условия применения. Существует ряд причин подобной неэффективности. Во-первых, как правило, управленцы - практики не владеют методологиями системного анализа. Во-вторых, объём информации, касающейся деталей в организации управления на конкретном предприятии, оказывается слишком велик. В-третьих, не всегда эта информация оказывается полезной и консультантам в силу её "одноразового" характера. В-четвертых, при такой организации трудно реализовать принцип новых задач, для этого в процессе внедрения потребовались бы дополнительные итерации.

Поэтому были предложены методики разработки и внедрения программного обеспечения, в основу которых были положены новые принципы:

· привлечение пользователей к разработке системы, в том числе и к разработке программного обеспечения;

· прототипирование программного обеспечения;

· совмещение процесса обучения пользователей работе с базовой системой создания прототипа программного обеспечения.

Примером может служить подход, предложенный компанией Computer Associates в начале 90-х годов для проектов типа MRPII/ERP на базе системы CA-CAS .

Прототип ПО АСУП в дальнейшем может использоваться в следующих работах:

· при обучении более широкого круга персонала;

· при опытной эксплуатации;

· при модификации с целью получения окончательного варианта ПО.

Такой подход позволил в определённой степени решить проблему адаптации системы управления и в динамике, поскольку работники предприятия в ходе создания прототипа приобретали навыки работы со средствами проектирования и модификации системы.

Дальнейшее развитие методов и средств адаптации базовых систем направлено на достижение следующих целей:

· повышение уровня автоматизации проектирования и внедрения систем;

· обеспечение непрерывного управления конфигурацией и параметрами системы на всех стадиях её жизненного цикла;

· сокращение сроков внесения изменений в конфигурацию и параметры системы по мере модернизации производственного процесса и управления;

· совмещение типовых решений, проверенных практикой, с решениями, зависящими от конкретных условий предприятия.

Примером одного из многочисленных средств адаптации базовых систем является методология Orgware, используемая фирмой BAAN.

Разработка АСУП на предприятии может вестись как "от нуля", так и на основе референционной модели (Reference Model ).

Референционная модель представляет собой описание облика системы, функций, организационных структур и процессов, типовых в каком-либо смысле (отрасль, тип производства и т. д.). В ней отражаются типовые особенности, присущие определённому классу предприятий. Ряд компаний - производителей адаптивных АСУП совместно с крупными консалтинговыми фирмами в течение ряда лет ведёт разработку референционных моделей для различных отраслей. Существуют подобные модели для предприятий автомобильной, авиационной и других отраслей. Каждая модель является типовым проектным решением , на основе которого можно строить конкретные проекты.

Следует отметить, что адаптации и референционные модели входят в состав многих систем класса MRPII/ERP , что позволяет значительно сократить сроки их внедрения на предприятии.

Если в распоряжении предприятия нет референционной модели, то модель её уровня надо создавать в процессе проектирования как исходную. На основе исходной модели затем происходит проектирование, уточнение и детализация системы управления. Референционная модель в начале работ по автоматизации управления предприятием может представлять собой описание существующей системы и служить, таким образом, точкой отсчёта, с которой начинаются работы по совершенствованию системы управления.

Процесс проектирования системы может включать несколько фаз.

Результаты первой фазы: границы действия будущей системы и концептуальная бизнес-модель , которая отражает в укрупнённом виде функциональную структуру системы управления и связки функций управления для различных видов заказов, проходящих через систему.

В ходе второй фазы создается и документируется в репозитарии референционная бизнес-модель . Как правило, референционная модель включает следующие компоненты:

· иерархию бизнес-функций, представляющую собой нисходящую иерархическую структуру, описывающую в укрупнённом виде функциональную структуру будущей системы. При этом для нижних элементов структуры допускается задание нескольких вариантов реализации;

· модели бизнес-процессов. Это более глубокие модели, показывающие, как должны реализоваться функции. Внешне они напоминают традиционные блок-схемы и описывают последовательность элементарных действий, которые могут быть выполнены системой, другими приложениями, ручными действиями, бизнес-процессами более глубокого уровня;

· модель организационной структуры, которая описывает структуру организации, отношения между подразделениями и людьми и роли, предписываемые управленцам.

На следующей фазе создается проектная модель предприятия (Project Model ), которая является развитием и уточнением функциональной структуры для конкретного предприятия. Она может быть создана и минуя референционную модель, но такой подход не является эффективным для сложных проектов.

Заключительная фаза - привязка проектной модели к ролям, заданным детализированной моделью организационной структуры, к функциям системы и техническим средствам. В результате создаётся комплексная конфигурация программного и организационного обеспечения, технических средств.

40. Какие существуют способы приобретения ИС?

покупка готовой ИС;

покупка и доработка ИС;

аутсорсинг ИС.

41. Каковы преимущества и недостатки покупки ИС?

Способ приобретения ИС - последовательность действий от определения и формализации потребностей в информационной системе до момента, пока ИС не будет внедрена на предприятии.

Классификация способов приобретения ИС:

покупка готовой ИС;

разработка ИС (самостоятельная или заказная);

покупка и доработка ИС;

аутсорсинг ИС.

Преимуществами закупки готовых ИС являются : время разработки равное нулю; система тиражирована (наличие документации)

Недостатками закупки готовых ИС являются : система тиражирована (Вопросы защиты информации); необходима адаптация к предъявляемым требованиям.

Недостатками разработки ИС специализированной фирмой являются: длительное время разработки

Недостатками самостоятельной разработки ИС являются : длительное время разработки; отсутствия должной квалификации разработчиков; необходимость создания отдела ИТ.

Преимуществами самостоятельной разработки ИС являются : система уникальна; хорошая адаптация к предъявляемым требованиям

Преимуществами разработки ИС специализированной фирмой являются: система уникальна; хорошая адаптация к предъявляемым требованиям; наличие должной квалификации разработчиков.

Аутсорсинг ИС – это: заказ информационной системы фирмой-потребителем у фирмы-производителя ИС; сдача ИС фирмой-производителем в аренду фирме-потребителю ИС; выполнение сторонней фирмой обработки информации для фирмы-потребителя.

: возможность сфокусировать внимание компании на ее основном бизнесе; возможность гибко реагировать на изменения на рынке и внутри компании; отсутствие необходимости в расширении штата компании; сокращение затрат на операции.

Недостатками аутсорсинга ИС являются: возможность потери поставщика (надежность)

42. Каковы преимущества и недостатки разработки ИС фирмой-

разработчиком ИС?

Преимущества:

Проект выполняет высококлассная команда профессионалов;

Полноценное документирование проекта;

Разрабатываются с учетом специфики конкретного предприятия, требований и пожеланий специалистов предприятия, которые будут эту ИС использовать;

Могут быть реализованы нестандартные, экзотические функции, которые никогда не появятся в коробочных системах;

Бывает, что на предприятии работает другая ИС, которую заказчик не хочет менять (или даже несколько). В таком случае могут быть заказаны средства интеграции этих систем в одну с целью сохранения бизнес-процессов и накопленных данных;

Отсутствует лишняя функциональность. Интерфейс не перегружен и работать с такой системой обычно проще;

Заказные системы производительнее универсальных и предъявляют меньшие требования к аппаратуре;

Заказная система может развиваться разработчиком в требующемся заказчику направлении;

Разработка, настройка и сопровождение находится в одних руках профессионалов, что повышает устойчивость системы;

Недостатки:

Часто самая большая стоимость;

Часто занимает самое длительное время;

Наличие самого периода разработка;

Отсутствует возможность заранее познакомиться с системой, "пощупать ее руками";

43. Каковы преимущества и недостатки разработки ИС

собственными силами?

Преимущества:

Хорошая адаптация к предъявляемым требованиям;

Продукт не тиражируем (индивидуален);

Возможность быстрого изменения функциональности

Недостатки:

Разработка не закончится никогда;

Плохая адаптивность;

Необходимо создавать команду, либо отрывать от работы текущих сотрудников ИТ отдела;

Часто учитываются пожелания руководства в ущерб качеству разработки;

Проект может захлебнуться:

– из-за нехватки квалификации внутренних специалистов;

– из-за ухода ведущих специалистов;

– из-за нехватки внутренних ресурсов;

Часто плохая документированность системы;

44. Каковы преимущества и недостатки покупки и доработки

Покупка ИС :

При покупке ИС необходимо:

Оценить сам программный продукт (функционал и другие свойства);

Оценить обеспечивающую технологию и платформу;

Оценить качество обслуживания (HotLine,скорая помощь, новые версии, обучение и др.);

Оценить фирму-поставщика;

Преимущества:

Время разработки равно нулю;

Система тиражирована;

Часто имеется возможность выбора из нескольких готовых систем;

Помимо ИС вы покупаете и бизнес процессы;

Недостатки:

Необходима адаптация под организационную структуру, функциональные требования и т.д.;

Система тиражируема: вопросы защиты, новизны и др. вызывают определенные опасения;

Высокая степень риска;

Потребности сотрудников в функционале системы скорее всего будет удовлетворены не полностью;

Покупка и доработка ИС:

В этом случае покупается ядро системы (например, в бухгалтерии это проводки), а остальное доделывается.

Преимущества:

Покупаемое ядро является отлаженным и законченным компонентом;

Возможная доработка именно требуемой функциональности;

Не надо платить за то, что компании не нужно;

Недостатки:

Необходим отдел информационных технологий;

Схема эффективна, если объем работ по доведению относительно невелик;

Часто можно доработать только в рамках информационной модели ядра;

45. Каковы преимущества и недостатки заказных, уникальных и

тиражируемых информационных систем?

ИС делятся на индивидуальные и тиражируемые системы, а также на самостоятельные и заказные разработки.

Основные аргументы за и против этих вариантов приведены в
таблице.

Самостоятельная разработка

"+" Полное соответствие текущим требованиям организации

Наличие предыдущих наработок

"-" Большая стоимость разработки (особенно по сравнению со стоимостью «коробочных» продуктов)

Возникновение проблем, связанных с модификацией системы

Готовая (тиражируемая) система (адаптированная)

"+" Поддержка и обновление версий

Соответствие российским и международным стандартам

"-" Высокая стоимость готовых систем (среднего и особенно высшего класса)

Зависимость от фирмы разработчика

Недостатками зарубежных ИС

46. Каковы преимущества и недостатки отечественных и

зарубежных информационных систем?

Отечественная или зарубежная тиражируемая система.

Существуют два полярных мнения:

1) сколько бы ни стоила отечественная система, она предпочтительнее импортной, внедрение которой обходится несравнимо дороже. Кроме того, отечественные системы лучше приспособлены к условиям российского бизнеса;

2) единственными системами, которые позволяют полностью автоматизировать все аспекты управления предприятием, являются зарубежные системы типа ERP. Поэтому, несмотря на их более высокую стоимость, предприятиям следует выбирать именно ERP-системы, жизнеспособность которых подтверждена мировым опытом.

Преимуществами зарубежных ИС являются : высокое качество; большая функциональность; высокая надежность

Преимуществами отечественных ИС являются : адаптированность к российским условиям.

Недостатками зарубежных ИС являются: необходимость адаптации к российским условиям

Недостатками отечественных ИС являются: не достаточно высокое качество; не достаточно большая функциональность; не достаточно высокая надежность

47. Каковы преимущества и недостатки аутсорсинга?

Аутсорсинг ИС – это:

заказ информационной системы фирмой-потребителем у фирмы-производителя ИС;

сдача ИС фирмой-производителем в аренду фирме-потребителю ИС;

выполнение сторонней фирмой обработки информации для фирмы-потребителя.

Цели аутсорсинга

Снижение издержек (правда, более актуально для зарубежных стран, где ставка почасовой оплаты гораздо выше, чем в России);

При необходимости резкого сокращения срока работ (при высокой загруженности IT-специалистов);

В случае, если невозможно выполнить задачу силами своих сотрудников;

Функции и задачи аутсорсинга

Разработка и внедрение больших информационных систем;

Консалтинговые услуги (проведение тендеров, поиск партнеров, экспертные оценки, содействие в стратегии развития, подготовка регламентов, ИТ-аудит и т.п.);

Обслуживание и ремонт компьютерной и серверной техники;

Телекоммуникационные услуги;

Поддержка локальных сетей;

Обслуживание телефонного и офисного оборудования;

Развитие информационной безопасности;

Поддержку дорогостоящих с точки зрения ИТ бизнес-процессов (процессинг, выпуск пластиковых карт);

Преимуществами аутсорсинга ИС являются :

возможность сфокусировать внимание компании на ее основном бизнесе;

возможность гибко реагировать на изменения на рынке и внутри компании;

отсутствие необходимости в расширении штата компании;

сокращение затрат на операции.

Недостатками аутсорсинга ИС являются:

возможность потери поставщика (надежность)

48. Какие составляющие включает цена приобретения ИС?

Цена приобретения информационной системы включает стоимость программного продукта, стоимость СУБД, стоимость операционной системы

стоимость услуг: оценка стоимости сопутствующих профессиональных услуг, а затем соотношения между стоимостью лицензий и стоимостью этих услуг.

Стоимость инсталляции зависит от степени настройки решения в соответствии с индивидуальными требованиями заказчика; того, кто ее проводит и как она оценивается.

Стоимость аппаратного обеспечения: необходимые дополнительные устройства и аппаратура (серверы, запоминающие устройства, сетевое оборудование и т.д.).

Стоимость обновления версий и технической поддержки: какой процент от стоимости лицензии составляет стоимость обновления и технической поддержки в течение года; возможные скидки

Существуют следующие типы (сектора) ПО:

Универсальное – создаётся для массовой продажи многочисленным пользователям;

Специализированное – рассчитанное на конкретную группу пользователей;

Уникальное – разрабатывается по индивидуальному заказу для решения конкретной задачи.

От типа ПО зависит соотношение материальной и интеллектуальной составляющей и явных и неявных затрат в TCO.

Стоимость ИС и «железа» при покупке - современные политики лицензирования. Программное обеспечение защищено от несанкционированного копирования законами об авторских правах. Законы об авторских правах предусматривают сохранение за автором (издателем) программного обеспечения нескольких эксклюзивных прав, самое важное из которых - право на производство копий программного обеспечения.

Приобретение программного продукта - это приобретение лицензии (права) на его использование. Программное обеспечение на компьютере находится "в пользовании", когда оно помещено в постоянную память (обычно на жесткий диск, но возможно и на cd-rom или другое устройство для хранения информации) или загружено в оперативную память (ОЗУ).

Цена приобретения никогда не исчерпывает всех затрат, связанных с использованием информационных ресурсов, а в ряде случаев может оказаться даже и неосновной их статьей.

49. Какие составляющие совокупная стоимость владения ИС?

Совокупная стоимость владения (ТСО – Total Cost of Ownership) информационной системой – это: сумма прямых и косвенных затрат, которые несет владелец ИС за период ее жизненного цикла

Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР ), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Введение

Существет несколько определений ИСППР , которые, в общем-то, крутятся вокруг одного и того же функционала. В общем виде, ИСППР - это такая система, которая ассистирует ЛПР (Лицам, Принимающим Решения) в принятии этих самых решений, используя инструментарии дата майнинга, моделирования и визуализации, обладает дружелюбным (G)UI, устойчива по качеству, интерактивна и гибка по настройкам.

Зачем нужны СППР :

  1. Сложность в принятии решений
  2. Необходимость в точной оценке различных альтернатив
  3. Необходимость предсказательного функционала
  4. Необходимость мультипотокового входа (для принятия решения нужны выводы на основе данных, экспертные оценки, известные ограничения и т.п.)
Первые СППР (тогда еще без И) выросли из СПТ (Систем Процессинга Транзакций), в середине 60-х - начале 70-х. Тогда эти системы не обладали никакой интерактивностью, представляя собой, по сути, надстройки над РСУБД, с некоторым (совсем не большим) функционалом численного моделирования. Одной из первых систем можно назвать DYNAMO, разработанную в недрах MIT и представлявшую собой систему симуляции каких-либо процессов на основе исторических транзакций. После выхода на рынок мейнфреймов IBM 360 стали появляться и условно-коммерческие системы, применявшиеся в оборонке, спецслужбах и НИИ.

С начала 80-х уже можно говорить о формировании подклассов СППР , таких как MIS (Management Information System), EIS (Executive Information System), GDSS (Group Decision Support Systems), ODSS (Organization Decision Support Systems) и др. По сути, эти системы представляли собой фреймворки, спососбные работать с данными на различных уровнях иерархии (от индивидуального до общеорганизационного), а внутрь можно было внедрить какую угодно логику. Примером может служить разработанная Texas Instruments для United Airlines система GADS (Gate Assignment Display System), которая поодерживала принятие решений в Field Operations - назначение гейтов, определение оптимального времени стоянки и т.п.

В конце 80-х появились ПСППР (Продвинутые - Advanced), которые позволяли осуществлять «what-if» анализ и использовали более продвинутый инструментарий для моделирования.

Наконец, с середины 90-х на свет стали появляться и ИСППР , в основе которых стали лежать инструменты статистики и машинного обучения, теории игр и прочего сложного моделирования.

Многообразие СППР

На данных момент существует несколько способов классификации СППР, опишем 3 популярных:

По области применения

  • Бизнес и менеджмент (прайсинг, рабочая сила, продукты, стратегия и т.п.)
  • Инжиниринг (дизайн продукта, контроль качества...)
  • Финансы (кредитование и займы)
  • Медицина (лекарства, виды лечения, диагностика)
  • Окружающая среда

По соотношению данные\модели (методика Стивена Альтера)

  • FDS (File Drawer Systems - системы предоставления доступа к нужным данным)
  • DAS (Data Analysis Systems - системы для быстрого манипулирования данными)
  • AIS (Analysis Information Systems - системы доступа к данным по типу необходимого решения)
  • AFM(s) (Accounting & Financial models (systems) - системы рассчета финансовых последствий)
  • RM(s) (Representation models (systems) - системы симуляции, AnyLogic как пример)
  • OM(s) (Optimization models (systems) - системы, решающие задачи оптимизации)
  • SM(s) (Suggestion models (systems) - системы построения логических выводов на основе правил)

По типу использумого инструментария

  • Model Driven - в основе лежат классические модели (линейные модели, модели управления запасами, транспортные, финансовые и т.п.)
  • Data Driven - на основе исторических данных
  • Communication Driven - системы на оснвое группового принятия решений экспертами (системы фасилитации обмена мнениями и подсчета средних экспертных значений)
  • Document Driven - по сути проиндексированное (часто - многомерное) хранилище документов
  • Knowledge Driven - внезапно, на основе знаний. При чем знаний как экспертных, так и выводимых машинно

Я требую жалобную книгу! нормальную СППР

Несмотря на такое многообразие вариантов классификаций, требования и атрибуты СППР хорошо ложатся в 4 сегмента:
  1. Качество
  2. Организация
  3. Ограничения
  4. Модель
На схеме ниже покажем, какие именно требовани и в какие сегменты ложаться:

Отдельно отметим такие важные атрибуты, как масштабируемость (в ныне одном подходе agile никуда без этого), способность обрабатывать плохие данные, юзабилити и user-friendly interface, нетребовательность к ресурсам.

Архитектура и дизайн ИСППР

Существет несколько подходов к тому, как архитектурно представить СППР. Пожалуй, лучшее описание разности подходов - «кто во что горазд». Несмотря на разнообразие подходов, осуществляются попытки создать некую унифицированную архитектуру, хотя бы на верхнем уровне.

Действительно, СППР вполне можно разделить на 4 больших слоя:

  1. Интерфейс
  2. Моделирование
  3. Data Mining
  4. Data collection
А уж в эти слои можно напихать какие угодно инструменты.

На схеме ниже представляю мое видение архитектуры, с описанием функционала и примерами инструментов:

С архитектурой более или менее понятно, перейдем к дизайну и собственно построению СППР.

В прицнипе, тут нет никакого rocket science. При построении ИСППР необходимо придерживаться следующих шагов:

  1. Анализ домена (собственно, где мы будем нашу ИСППР использовать)
  2. Сбор данных
  3. Анализ данных
  4. Выбор моделей
  5. Экспертный анализ\интерпретация моделей
  6. Внедрение моделей
  7. Оценка ИСППР
  8. Внедрение ИСППР
  9. Сбор обратной свзяи (на любом этапе , на самом деле)
На схеме это выглядит так:

Оценивать ИСППР можно двумя способами. Во-первых, по матрице атрибутов, которая представлена выше. Во-вторых, по критериальному чек-листу, который может быть любым и зависеть от вашей конкретной задачи. В качестве примера такого чек-листа я бы привел следующее:

Подчеркну, что это только ИМХО и вы можете сами сделать удобный для себя чек-лист.

А где тут машинное обучение и теория игр?

Да практически везде! По крайней мере в слое, связанном с моделированием.

С одной стороны, есть классические домены, назовем их «тяжелыми», вроде управления цепями поставок, производства, запасов ТМЦ и проч. В тяжелых доменах наши с вами любимые алгоритмы могут привнести дополнительные инсайты для зарекомендовавших себя классических моделей. Пример: предиктивная аналитика по выходам из строя оборудования (машинное обучение) отлично сработается с каким-нибудь FMEA анализом (классика).

С другой стороны, в «легких» доменах, вроде клиентской аналитики, предсказании churn, выплаты кредитов - алгоритмы машинного обучения будут на первых ролях. А в скоринге, например, можно совмещать классику с NLP, когда решаем выдавать ли кредит на основе пакета документов (как раз-таки document driven СППР).

Классические алгоритмы машинного обучения

Допустим, есть у нас задачка: менеджеру по продажам стальной продукции надо еще на этапе получения заявки от клиента понимать, какого качества готовая продукция поступит на склад и применить некое управляющее воздействие, если качество будет ниже требуемого.

Поступаем очень просто:

Шаг 0. Определяем целевую переменную (ну, например, содержание оксида титана в готовой продукции)
Шаг 1. Определяемся с данными (выгружаем из SAP, Access и вообще ото всюду, куда дотянемся)
Шаг 2. Собираем фичи\генерим новые
Шаг 3. Рисуем процесс data flow и запускаем его в продакшн
Шаг 4. Выбираем и обучаем модельку, запускаем ее крутиться на сервере
Шаг 5. Определяем feature importances
Шаг 6. Определяемся со вводом новых данных. Пусть наш менеджер их вводит, например, руками.
Шаг 7. Пишем на коленке простой web-based интерфейс, куда менеджер вводит ручками значения важных фич, это крутится на серваке с моделькой, и в тот же интерфейс выплевываестя прогнозируемое качество продукции

Вуа-ля, ИСППР уровня детсад готова, можно пользоваться.

Подобные «простые» алгоритмы также использует IBM в своей СППР Tivoli, которая позволяет определять состояние своих супер-компьютеров (Watson в первую очередь): на основе логов выводится информация по перформансу Watson, прогнозируется доступность ресурсов, баланс cost vs profit, необходимость обслуживания и т.п.

Компания ABB предлагает своим клиентам DSS800 для анализа работы электродвигателей той же ABB на бумагоделательной линии.

Финская Vaisala , производитель сенсоров для минтранса Финляндии использует ИСППР для предсказания того, в какие периоды необходимо применять анти-обледенитель на дорогах во избежания ДТП.

Опять-таки финская Foredata предлагает ИСППР для HR, которая помогает принимать решения по годности кандидата на позицию еще на этапе отбора резюме.

В аэропорту Дубай в грузовом терминале работает СППР, которая определяет подозрительность груза. Под капотом алгоритмы на основе сопровидительных документов и вводимых сотрудниками таможни данных выделяют подозрительные грузы: фичами при этом являются страна происхождения, информация на упаковке, конкретная информация в полях декларации и т.п.

Тысячи их!

Обычные нейронные сети

Кроме простого ML, в СППР отлично ложится и Deep Learning.

Некоторые примеры можно найти в ВПК, например в американской TACDSS (Tactical Air Combat Decision Support System). Там внутри крутятся нейронки и эволюционные алгоритмы, помогающие в определении свой-чужой, в оценке вероятности попадания при залпе в данный конкретный момент и прочие задачки.

В немного более реальном мире можно рассмотреть такой пример: в сегменте B2B необходимо определить, выдавать ли кредит организации на основе пакета документов. Это в B2C вас оператор замучает вопросами по телефону, проставит значения фич у себя в системе и озвучит решение алгоритма, в B2B несколько посложнее.

ИСППР там может строиться так: потенциальный заемщик приносит заранее согласованный пакет документов в офис (ну или по email присылает сканы, с подписями и печатями, как положено), документы скармливаются в OCR, затем передаются в NLP-алгоритм, который дальше уже делит слова на фичи и скармливает их в NN. Клиента просят попить кофе (в лучшем случае), или вот где карту оформляли туда и идите прийти после обеда, за это время как раз все и обсчитается и выведет на экран девочке-операционисту зеленый или красный смайлик. Ну или желтый, если вроде ок, но нужно больше справок богу справок.

Подобными алгоритмами пользуются также в МИД: анкета на визу + прочие справки анализируются прямо в посольстве \ консульстве, после чего сотруднику на экране высвечивается один из 3 смайликов: зеленый (визу выдать), желтый (есть вопросы), красный (соискатель в стоп-листе). Если вы когда-нибудь получали визу в США, то то решение, которое озвучивает вам сотрудник консульства - это именно результат работы алгоритма в совокупности с правилами, а никак не его личное субъективное мнение о вас:)

В тяжелых доменах известны также СППР на основе нейронок, определяющие места накопления буфера на производственных линиях (см, напимер, Tsadiras AK, Papadopoulos CT, O’Kelly MEJ (2013) An artificial neural network based decision support system for solving the buffer allocation problem in reliable production lines. Comput Ind Eng 66(4):1150–1162 ), Общие Нечеткие Нейронные Сети на основе мин-макса (GFMMNN) для кластеризации потребителей воды (Arsene CTC, Gabrys B, Al-Dabass D (2012) Decision support system for water distribution systems based on neural networks and graphs theory for leakage detection. Expert Syst Appl 39(18):13214–13224 ) и другие.

Вообще стоит отметить, что NN как нельзя лучше подходят для принятия решений в условиях неопределенности, т.е. условиях, в которых и живет реальный бизнес. Алгоритмы кластеризации также хорошо вписались.

Байесовские сети

Бывает иногда и так, что данные у нас неоднородны по видам появления. Приведем пример из медицины. Поступил к нам больной. Что-то мы про него знаем из анкеты (пол, возраст, вес, рост и т.п.) и анамнеза (перенесенные инфаркты, например). Назовем эти данные статическими. А что-то мы про него узнаем в процессе периодического обследования и лечения (несколько раз в день меряем температуру, состав крови и проч). Эти данные назовем динамическими. Понятно, что хорошая СППР должна уметь учитывать все эти данные и выдавать рекомендации, основываясь на всей полноте информации.

Динамические данные обновляются во времени, соответственно, паттерн работы модели будет такой: обучение-решение-обучение , что в общем похоже на работу врача: примерно определить диагноз, прокапать лекарство, посмотреть за реакцией. Таким образом, мы постоянно пребываем в состоянии неопределенности, подействует лечение или нет. И состояние пациента меняется динамически. Т.е. нам надо построить динамическую СППР, причем еще и knowledge driven.

В таких случаях нам отлично помогут Динамические Байесовские Сети (ДБС) - обобщение моделей на основе фильтров Калмана и Скрытой Марковской Модели.

Разделим данные по пациенту на статические и динамические.

Если бы мы строили статическую байесовскую сетку, то нашей задачей было бы посчитать следующую вероятность:

,

Где - узел нашей сетки (вершина графа, по сути), т.е. значение каждой переменной (пол, возраст....), а С - предсказываемый класс (болезнь).

Статическая сетка выглядит так:

Но это не айс. Состояние пациента меняется, время идет, надо решать, как же его лечить.

Вот для этого и применим ДБС.

Сначала, в день приема пацитента, строим статическую сетку (как на картинке выше). Потом, в каждый день i строим сетку на основе динамически меняющихся данных:

Соответственно, совокупная модель примет следующий вид:

Таким, образом, результат мы расчитаем по следующей формуле:

Где T - совокупное время госпитализации, N - количество переменных на каждом из шагов ДБС.

Внедрить эту модель в СППР необходимо несколько иначе - скорее тут надо идти от обратного, сначала эту модель зафиксировать, а потом строить интерфейс вокруг . Т.е., по сути, мы сделали хард модель, внутри которой динамические элементы.

Теория игр

Теория игр, в свою очередь, гораздо лучше подойдет для ИСППР, созданных для принятия стратегических решений. Приведем пример.

Допустим, на рынке существует олигополия (малое количество соперников), есть определенный лидер и это (увы) не наша компания. Нам необходимо помочь менеджменту принять решение об объемах выпускаемой нами продукции: если мы будем выпускать продукцию в объеме , а наш соперник - , уйдем мы в минус или нет? Для упрощения возьмем частный случай олигополии - дуополию (2 игрока). Пока вы думаете, RandomForest тут или CatBoost, я вам предложу использовать классику - равновесие Штакельберга. В этой модели поведение фирм описывается динамической игрой с полной совершенной информацией, при этом особенностью игры является наличие лидирующей фирмы, которая первой устанавливает объём выпуска товаров, а остальные фирмы ориентируются в своих расчетах на неё.
Для решения нашей задачи нам надо всего-то посчитать такое , при котором решится задача оптимизации следующего вида:

Для ее решения (сюрприз-сюрприз!) надо лишь приравнять первую производную по к нулю.

При этом для такой модели нам понадобится знать только предложение на рынке и стоимость за товар от нашего конкурента, после чего построить модель и сравнить получившееся q с тем, которое хочет выкинуть на рынок наш менеджмент. Согласитесь, несколько проще и быстрее, чем пилить NN.

Для таких моделей и СППР на их основе подойдет и Excel. Конечно, если вводимые данные надо посчитать, то нужно что-то посложнее, но не сильно. Тот же Power BI справится.

Искать победителя в битве ML vs ToG бессмысленно. Слишком разные подходы к решению задачи, со своими плюсами и минусами.

Что дальше?

С современным состоянием ИСППР вроде бы разобрались, куда идти дальше?

В недавнем интервью Джуда Перл, создатель тех самых байесовских сетей, высказал любопытное мнение. Если слегка перефразировать, то

«все, чем сейчас занимаются эксперты в машинном обучении, это подгонка кривой под данные. Подгонка нетривиальная, сложная и муторная, но все-таки подгонка.»
(почитать)

Скорее всего, вангую, через лет 10 мы перестанем жестко хардкодить модели, и начнем вместо этого повсеместно обучать компьютеры в создаваемых симулируемых средах. Наверное, по этому пути и пойдет реализация ИСППР - по пути AI и прочих скайнетов и WAPR"ов.

Если же посмотреть на более близкую перспективу, то будущее ИСППР за гибкостью решений. Ни один из предложенных способов (классические модели, машинное обучение, DL, теория игр) не универсален с точки зрения эффективности для всех задач. В хорошей СППР должны сочетаться все эти инструменты + RPA, при этом разные модули должны использоваться под разные задачи и иметь разные интерфейсы вывода для разных пользователей. Этакий коктейль, смешанный, но ни в коем случае не взболтанный.

Литература

  1. Merkert, Mueller, Hubl , A Survey of the Application of Machine Learning in Decision Support Systems, University of Hoffenhaim 2015
  2. Tariq, Rafi ,Intelligent Decision Support Systems- A Framework, India, 2011
  3. Sanzhez i Marre, Gibert , Evolution of Decision Support Systems, University of Catalunya, 2012
  4. Ltifi, Trabelsi, Ayed, Alimi , Dynamic Decision Support System Based on Bayesian Networks, University of Sfax, National School of Engineers (ENIS), 2012

DSS (Decision Support Systems) - система поддержки принятия решений или СППР - это компьютерная система, которая путем сбора и анализа большого количества информации может влиять на процесс принятия решений организационного плана в бизнесе и предпринимательстве.

Интерактивные системы позволяют руководителям получить полезную информацию из первоисточников, проанализировать ее, а также выявить существующие бизнес-модели для решения определенных задач. С помощью СППР можно проследить за всеми доступными информационными активами, получить сравнительные значения объемов продаж, спрогнозировать доход организации при гипотетическом внедрении новой технологии, а также рассмотреть все возможные альтернативные решения.

По взаимодействию с пользователем выделяют три вида СППР:


  • пассивные помогают в процессе принятия решений, но не могут выдвинуть конкретного предложения;
  • активные непосредственно участвуют в разработке правильного решения;
  • кооперативные предполагают взаимодействие СППР с пользователем. Выдвинутое системой предложение пользователь может доработать, усовершенствовать, а затем отправить обратно в систему для проверки. После этого предложение вновь представляется пользователю, и так до тех пор, пока он не одобрит решение.

По способу поддержки различают:

  • модельно-ориентированные СППР, используют в работе доступ к статистическим, финансовым или иным моделям;
  • СППР, основанные на коммуникациях, поддерживают работу двух и более пользователей, занимающихся общей задачей;
  • СППР, ориентированные на данные, имеют доступ к временным рядам организации. Они используют в работе не только внутренние, но и внешние данные;
  • СППР, ориентированные на документы, манипулируют неструктурированной информацией, заключенной в различных электронных форматах;
  • СППР, ориентированные на знания, предоставляют специализированные решения проблем, основанные на фактах.

Выделяют четыре основных компонента:

  • информационные хранилища данных;
  • средства и методы извлечения, обработки и загрузки данных;
  • многомерная база данных и средства анализа OLAP ;
  • средства Data Mining.

СППР позволяет облегчить работу руководителям предприятий и повысить ее эффективность. Они значительно ускоряют решение проблем в бизнесе. СППР способствуют налаживанию межличностного контакта. На их основе можно проводить обучение и подготовку кадров. Данные информационные системы позволяют повысить контроль над деятельностью организации. Наличие четко функционирующей СППР дает большие преимущества по сравнению с конкурирующими структурами. Благодаря предложениям, выдвигаемым СППР, открываются новые подходы к решению повседневных и нестандартных задач.

Оставьте свой комментарий!

Загрузка...