last-tochka.ru

Какой уран используют на аэс. Как делают ядерное топливо (29 фото). Безопасность работы АЭС

Атомная энергетика состоит из большого количества предприятий разного назначения. Сырье для этой индустрии добывается на урановых рудниках. После оно доставляется на предприятия по изготовлению топлива.

Далее топливо транспортируют на атомные станции, где оно попадает в активную зону реактора. Когда ядерное топливо отрабатывает свой срок, его подлежат захоронению. Стоит отметить, что опасные отходы появляются не только после переработки топлива, но и на любом этапе - от добычи урана до работы в реакторе.

Ядерное топливо

Топливо бывает двух видов. Первое - это уран, добытый в шахтах, соответственно, природного происхождения. Он содержит сырье, которое способно образовать плутоний. Второе - это топливо, которое создано искусственно (вторичное).

Также ядерное топливо делится по химическому составу: металлическое, оксидное, карбидное, нитридное и смешанное.

Добыча урана и производство топлива

Большая доля добычи урана приходится всего лишь на несколько стран: Россию, Францию, Австралию, США, Канаду и ЮАР.

Уран - это основной элемент для топлива на атомных электростанциях. Чтобы попасть в реактор, он проходит несколько стадий обработки. Чаще всего залежи урана находятся рядом с золотом и медью, поэтому его добычу осуществляют с добычей драгоценных металлов.

На разработках здоровье людей подвергается большой опасности, потому что уран - токсичный материал, и газы, которые появляются в процессе его добычи, вызывают разнообразные формы рака. Хотя в самой руде содержится очень малое количество урана - от 0,1 до 1 процента. Также большому риску подвергается население, которое проживает рядом с урановыми шахтами.

Обогащенный уран - главное топливо для атомных станций, но после его использования остается огромное количество радиоактивных отходов. Несмотря на всю его опасность, обогащение урана является неотъемлемым процессом создания ядерного топлива.

В природном виде уран практически нельзя нигде применить. Для того чтобы использовать, его нужно обогатить. Для обогащения используются газовые центрифуги.

Обогащенный уран используют не только в атомной энергетике, но и в производстве оружия.

Транспортировка

На любом этапе топливного цикла есть транспортировка. Она осуществляется всеми доступными способами: по земле, морем, воздухом. Это большой риск и большая опасность не только для экологии, но и для человека.

Во время перевозки ядерного топлива или его элементов происходит немало аварий, следствием которых является выброс радиоактивных элементов. Это одна из многих причин, по которой считают небезопасной.

Вывод из строя реакторов

Ни один из реакторов не демонтирован. Даже печально известная Чернобыльская Все дело в том, что по подсчетам экспертов цена демонтажа равняется, а то и превосходит цену постройки нового реактора. Но точно никто не может сказать, сколько понадобится средств: стоимость рассчитывалась на опыте демонтажа небольших станций для исследования. Специалисты предлагают два варианта:

  1. Помещать реакторы и отработанное ядерное топливо в могильники.
  2. Строить над вышедшими из эксплуатации реакторами саркофаги.

В ближайшие десять лет около 350 реакторов по всему миру выработают свой ресурс и должны быть выведены из строя. Но так как наиболее подходящего по безопасности и цене способа не придумали, это вопрос еще решается.

Сейчас по всему миру работают 436 реакторов. Безусловно, это большой вклад в энергосистему, но он очень небезопасен. Исследования показывают, что через 15-20 лет АЭС смогут заменить станциями, которые работают на энергии ветра и солнечных батареях.

Ядерные отходы

Огромное количество ядерных отходов образуется в результате деятельности АЭС. Переработка ядерного топлива также оставляет после себя опасные отходы. При этом ни одна из стран не нашла решения проблемы.

Сегодня ядерные отходы содержатся во временных хранилищах, в бассейнах с водой или захороняются неглубоко под землей.

Наиболее безопасный способ - это хранение в специальных хранилищах, но тут тоже возможна утечка радиации, как и при других способах.

На самом деле ядерные отходы имеют некоторую ценность, но требуют строго соблюдения правил их хранения. И это наиболее острая проблема.

Важным фактором является время, в течение которого отходы опасны. У каждого свой срок распада, в течение которого оно токсично.

Виды ядерных отходов

При эксплуатации любой атомной электростанции ее отходы попадают в окружающую среду. Это вода для охлаждения турбин и газообразные отходы.

Ядерные отходы делят на три категории:

  1. Низкого уровня - одежда сотрудников АЭС, лабораторное оборудование. Такие отходы могут поступать и из медицинских учреждений, научных лабораторий. Они не представляют большой опасности, но требуют соблюдения мер безопасности.
  2. Промежуточного уровня - металлические емкости, в которых перевозят топливо. Уровень радиации их достаточно высок, и те, кто находится от них недалеко, должны быть защищены.
  3. Высокого уровня - это отработанное ядерное топливо и продукты его переработки. Уровень радиоактивности быстро уменьшается. Отходов высокого уровня очень мало, около 3 процентов, но они содержат 95 процентов всей радиоактивности.

Как производят ядерное топливо для АЭС aslan wrote in November 17th, 2015

Новосибирский завод химконцентратов - один из ведущих мировых производителей ядерного топлива для АЭС и исследовательских реакторов России и зарубежных стран. Единственный российский производитель металлического лития и его солей. Входит в состав Топливной компании "ТВЭЛ" Госкорпорации "Росатом".

Внимание, комментарии под фото!

Несмотря на то, что в 2011 году НЗХК произвел и реализовал 70 % мирового потребления изотопа лития-7, основным видом деятельности завода является выпуск ядерного топлива для энергетических и исследовательских реакторов.
Этому виду и посвящен текущий фоторепортаж.

Крыша здания основного производственного комплекса

Цех производства твэл и ТВС для исследовательских реакторов

Участок изготовления порошка диоксида урана методом высокотемпературного пирогидролиза

Загрузка контейнеров с гексафторидом урана

Комната операторов
Отсюда идет управление процессом производства порошка диоксида урана, из которого затем изготавливают топливные таблетки.

Участок изготовления урановых таблеток
На переднем плане видны биконусы, где хранится порошок диоксида урана.
В них происходит перемешивание порошка и пластификатора, который позволяет таблетке лучше спрессоваться.

Таблетки ядерного керамического топлива
Далее они отправления в печь на отжиг.

Факел (дожигания водорода) на печи спекания таблеток
Таблетки отжигаются в печах при температуре не менее 1750 градусов в водородной восстановительной среде в течение 20 с лишним часов.

Производственно-технический контроль таблеток ядерного керамического топлива
Одна таблетка весом 4,5 г по энерговыделению эквивалентна 400 кг каменного угля, 360 куб. м газа или 350 кг нефти.

Все работы ведутся в боксах через специальные перчатки.

Разгрузка тарных мест с таблетками

Цех производства твэл и ТВС для АЭС

Автоматизированная линия изготовления твэл

Здесь происходит заполнение циркониевых трубок таблетками диоксида урана.
В итоге получаются готовые твэлы около 4 м в длину — тепловыделяющие элементы.
Из твэлов уже собирают ТВС, иначе говоря, ядерное топливо.

Перемещение готовых твэл в транспортных контейнерах
Бахилы даже на колесах.

Участок сборки ТВС
Установка нанесения лакового покрытия на твэлы

Закрепление твэлов в механизме загрузки

Изготовление каркаса - сварка каналов и дистанционирующих решёток
В этот каркас затем установят 312 твэлов.

Технический контроль каркаса

Каналы и дистанционирующие решётки

Автоматизированные стенды снаряжения пучка твэлов

Сборка пучка

Технический контроль ТВС

Твэлы с штрих-кодовой маркировкой по которой можно проследить, буквально, весь путь производства изделия.

Стенды контроля и упаковки готовых ТВС

Контроль готовых ТВС
Проверяют, чтобы расстояние между твэлами было одинаковое.

Готовая ТВС

Двухтрубные контейнеры для транспортировки ТВС
Топливо для атомных станций, произведенное в НЗХК, используется на российских АЭС, а также поставляется в Украину, в Болгарию, Китай, Индию и Иран.

Взят у gelio в НЗХК. Производство ядерного топлива для АЭС (2012)

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите пишите мне - Аслан ([email protected] ) Лера Волкова ([email protected] ) и Саша Кукса ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта http://bigpicture.ru/ и http://ikaketosdelano.ru

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

Атомная электростанция - комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.

На АЭС происходит три взаимных преобразования форм энергии

Ядерная энергия

переходит в тепловую

Тепловая энергия

переходит в механическую

Механическая энергия

преобразуется в электрическую

1. Ядерная энергия переходит в тепловую

Основой станции является реактор - конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.

ПАРОГЕНЕРАТОР

2. Тепловая энергия переходит в механическую

Тепло отводится из активной зоны реактора теплоносителем - жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.

ЭЛЕКТРОГЕНЕРАТОР

3. Механическая энергия преобразуется в электрическую

Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.


Из чего состоит АЭС?

Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).


Основным элементом реактора является активная зона(1) . Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.

Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.

На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.

Какие бывают АЭС?

В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

В настоящее время в России действует 5 АЭС с двухконтурными реакторами

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.

10,7% всемирной генерации электричества ежегодно вырабатывают атомные электростанции. Наряду с ТЭС и ГЭС они трудятся над обеспечением человечества светом и теплом, позволяют пользоваться электроприборами и делают наши жизнь удобнее и проще. Так уж вышло, что сегодня слова «атомная станция» ассоциируются с мировыми катастрофами и взрывами. Простые обыватели не имеют ни малейшего понятия о работе АЭС и ее строении, но даже самые непросвещенные наслышаны и напуганы происшествиями в Чернобыле и Фукусиме.

Что такое АЭС? Как они работают? Насколько опасны атомные станции? Не верьте слухам и мифам, давайте разбираться!

16 июля 1945 года на военном полигоне в США впервые извлекли энергию из ядра урана. Мощнейший взрыв атомной бомбы, принесший огромное количество человеческих жертв, стал прототипом современного и абсолютно мирного источника электроэнергии.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США. Для проверки работоспособности генератор подключили к 4м лампам накаливания, неожиданно для всех лампы зажглись. С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первая в мире атомная станция была запущена в Обнинске в СССР в 1954 году. Ее мощность составляла всего 5 мегаватт.

Что такое АЭС? АЭС это ядерная установка, которая производит энергию с помощью ядерного реактора. Ядерный реактор работает на ядерном топливе, чаще всего уране.

В основе принципа работы ядерной установки лежит реакция деления нейтронов урана , которые сталкиваясь друг с другом, делятся на новые нейтроны, которые, в свою очередь, тоже сталкиваются и тоже делятся. Такая реакция называется цепной, она и лежит в основе ядерной электроэнергетики. При всем этом процессе выделяется тепло, которое нагревает воду до ужасно горячего состояния (320 градусов по Цельсию). Потом вода превращается в пар, пар вращает турбину, она приводит в действие электрогенератор, который и вырабатывает электроэнергию.

Строительство АЭС сегодня ведется большими темпами. Основная причина роста количества АЭС в мире – это ограниченность запасов органического топлива, попросту говоря, запасы газа и нефти иссякают, они необходимы для промышленных и коммунальных нужд, а урана и плутония, выступающих топливом для атомных станций, нужно мало, его запасов пока вполне хватает.

Что такое АЭС? Это не только электричество и тепло. Наряду с выработкой электроэнергии, ядерные электростанции используются и для опреснения воды. К примеру, такая атомная станция есть в Казахстане.

Какое топливо используют на АЭС

На практике в атомных станциях могут применяться несколько веществ, способных выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, т.к. его сложнее преобразовать в тепловыделяющие элементы, если коротко ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри ТВЭлов находятся радиоактивные вещества. Эти трубки можно назвать хранилищами ядерного топлива. Вторая причина редкого использования тория – это его сложная и дорогая переработка уже после использования на АЭС.

Плутониевое топливо тоже не используется в атомной электроэнергетике, т.к. это вещество имеет очень сложный химический состав, который до сих пор так и не научились правильно использовать.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. Уран сегодня добывается тремя способами: открытым способом в карьерах, закрытым в шахтах, и способом подземного выщелачивания, с помощью бурения шахт. Последний способ особенно интересен. Для добычи урана выщелачиванием в подземные скважины заливается раствор серной кислоты, он насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде. Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья. Для сравнения, в России из одной тонны руды получают чуть больше полутора килограмм урана.

Места добычи урана нерадиоактивны. В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

В виде руды уран в АЭС использовать нельзя, никаких реакций он дать не сможет. Сначала урановое сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом. Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при чудовищно высоких температурах больше 1500 градусов по Цельсию. Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Конечно, просто так урановые таблетки в реактор не закидываются. Они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки. Именно ТВС и могут по праву называться топливом АЭС.

Переработка топлива АЭС

Примерно через год использования уран в ядерных реакторах нужно менять. Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение. В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них сделают свежее ядерное топливо.

Продукты распада урана и плутония идут на изготовление источников ионизирующих излучений. Они используются в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в раскаленную печь и из остатков варится стекло, которое потом остается храниться в специальных хранилищах. Почему именно стекло? Из него будет очень сложно достать остатки радиоактивных элементов, которые могут навредить окружающей среде.

Новости АЭС — не так давно появившийся новый способ утилизации радиоактивных отходов. Созданы так называемые быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива. По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Кроме того, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного. Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого никто использовал.

Как строится АЭС?

Что такое атомная электростанция? Что представляет собой это нагромождение серых зданий, которые большинство из нас видело только по телевизору? Насколько прочны и безопасны эти конструкции? Каково строение АЭС? В сердце любой атомной станции находится здание реактора, рядом с ним помещается машинный зал и здание безопасности.

ВАЖНО ЗНАТЬ:

Строительство АЭС ведется согласно нормативным актам, регламентам и требованиям безопасности для объектов, работающих с радиоактивными веществами. Ядерная станция – полноправный стратегический объект государства. Поэтому толщина укладки стен и железобетонных арматурных сооружений в здании реактора в несколько раз больше, чем у стандартных сооружений. Таким образом, помещения атомных станций могут выдержать 8-бальное землетрясение, торнадо, цунами, смерчи и падение самолета.

Здание реактора венчается куполом, который защищен внутренней и внешней бетонными стенками. Внутреннюю бетонную стенку покрывает стальной лист, который в случае аварии должен создать закрытое воздушное пространство и не выпустить радиоактивные вещества в воздух.

Каждая АЭС имеет свой бассейн выдержки. Туда помещаются урановые таблетки, которые уже отслужили свой срок. После того, как урановое топливо вытаскивают из реактора, оно остается чрезвычайно радиоактивным, чтобы реакции внутри ТВЭлов перестали происходить, должно пройти от 3х до 10ти лет (в зависимости от устройства реактора, в котором топливо находилось). В бассейнах выдержки урановые таблетки остывают, и внутри них перестают происходить реакции.

Технологическая схема АЭС, а проще говоря, схема устройства атомных станций бывает нескольких типов, как и характеристика АЭС и тепловая схема АЭС, она зависит от типа ядерного реактора, который используется в процессе получения электроэнергии.

Плавучая АЭС

Что такое АЭС, нам уже известно, но российским ученым пришло в голову, взять атомную станцию и сделать ее передвижной. К сегодняшнему дню проект почти завершен. Назвали эту конструкцию плавучая АЭС. По задумке, плавучая ядерная электростанция сможет обеспечить электричеством город населением до двухсот тысяч человек. Главное ее достоинство – возможность перемещения по морю. Строительство АЭС, способной к передвижению, пока ведется только в России.

Новости АЭС это скорый запуск первой в мире плавучей ядерной электростанции, которая призвана обеспечить энергией портовый город Певек, находящийся в Чукотском автономном округе России. Называется первая плавучая атомная станция «Академик Ломоносов», строится мини-АЭС в Петербурге и планируется к запуску в 2016 – 2019 годах. Презентация атомной электростанции на плаву состоялась в 2015, тогда строители представили почти готовый проект ПАЭС.

Плавучая АЭС призвана обеспечить электроэнергией самые отдаленные города, имеющие выход к морю. Ядерный реактор «Академика Ломоносова» не такой мощный, как у сухопутных атомных станций, но имеет срок эксплуатации 40 лет, это значит, что жители небольшого Певека почти полвека не будут страдать от нехватки электричества.

Плавучая АЭС может быть использована не только как источник тепловой и электроэнергии, но и для опреснения воды. По расчетам, в сутки она может выдать от 40 до 240 кубометров пресной воды.
Стоимость первого блока плавучей АЭС составила 16 с половиной миллиардов рублей, как видим, строительство атомных станций – не дешевое удовольствие.

Безопасность АЭС

После Чернобыльской катастрофы в 1986 году и аварии на Фукусиме в 2011 слова атомная АЭС вызывают у людей страх и панику. На деле современные атомные станции оснащены по последнему слову техники, разработаны специальные правила безопасности, и в целом защита АЭС состоит из 3х уровней:

На первом уровне должна быть обеспечена нормальная эксплуатация АЭС. Безопасность АЭС во многом зависит от правильно подобранного места для размещения атомной станции, качественно созданного проекта, выполнения всех условий при постройке здания. Все должно отвечать регламентам, инструкциям по безопасности и планам.

На втором уровне важно не допустить перехода нормальной работы АЭС в аварийную ситуацию. Для этого существуют специальные приборы, которые контролируют температуру и давление в реакторах, и сообщают о малейших изменениях показаний.

Если первый и второй уровень защиты не сработали, в ход идет третий – непосредственная реакция на аварийную ситуацию. Датчики фиксируют аварию и сами реагируют на нее – реакторы глушатся, источники радиации локализируются, активная зона охлаждается, об аварии сообщается.

Безусловно, ядерная электростанция требует особого внимания к системе безопасности, как на стадии строительства, так и на стадии эксплуатации. Несоблюдения строгого регламента могут повлечь за собой очень серьезные последствия, однако сегодня большая часть ответственности за безопасность АЭС ложится на компьютерные системы, а человеческий фактор почти полностью исключен. Принимая во внимание высокую точность современных машин, в безопасности АЭС можно быть уверенными.

Специалисты уверяют, что в стабильно работающих современных атомных станциях или, находясь рядом с ними, получить большую дозу радиоактивного излучения невозможно. Даже работники АЭС, которые, к слову, ежедневно измеряют уровень полученного излучения, подвергаются облучению не больше, чем обычные жители крупных городов.

Ядерные реакторы

Что такое АЭС? Это в первую очередь работающий ядерный реактор. Внутри него и происходит процесс выработки энергии. В ядерный реактор закладываются ТВС, в нем же урановые нейтроны вступают в реакцию друг с другом, там же они передают тепло воде и так далее.

Внутри конкретного здания реактора находятся следующие сооружения: источник водоснабжения, насос, генератор, паровая турбина, конденсатор, деаэраторы, очиститель, клапан, теплообменник, непосредственно реактор и регулятор давления.

Реакторы бывают нескольких типов, в зависимости от того, какое вещество исполняет функцию замедлителя и теплоносителя в устройстве. Наиболее вероятно, что современная ядерная электростанция будет иметь реакторы на тепловых нейтронах:

  • водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя);
  • графитоводные (замедлитель – графит, теплоноситель – вода);
  • графитогазовые (замедлитель – графит, теплоноситель – газ);
  • тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода).

КПД АЭС и мощность АЭС

Общий КПД АЭС (коэффициент полезного действия) с водо-водяным реактором около 33%, с графитоводным – около 40%, тяжеловодным – около 29%. Экономическая состоятельность АЭС зависит от КПД ядерного реактора, энергонапряженности активной зоны реактора, коэффициента использования установленной мощности за год и т.д.

Новости АЭС – обещание ученых в скором времени увеличить КПД атомных станций в полтора раза, до 50%. Это произойдет, если тепловыделяющие сборки, или ТВС, которые непосредственно закладываются в ядерный реактор, будут изготавливать не из сплавов циркония, а из композита. Проблемы АЭС сегодня в том, что цирконий недостаточно жаропрочен, он не выдерживает очень высоких температур и давления, поэтому и КПД АЭС выходит невысоким, композит же может выдержать температуру выше тысячи градусов по Цельсию.

Эксперименты по использованию композита в качестве оболочки для урановых таблеток ведутся в США, Франции и России. Ученые работают над увеличением прочности материала и его внедрением в атомную энергетику.

Что такое атомная электростанция? АЭС это мировая электрическая мощь. Общая электрическая мощность АЭС всего мира – 392 082 МВт. Характеристика АЭС зависит в первую очередь от ее мощности. Самая мощная атомная станция в мире находится во Франции, мощность АЭС Сиво (каждого блока) больше полутора тысяч МВт (мегаватт). Мощность других ядерных электростанций колеблется от 12 МВт в мини-АЭС (Билибинская АЭС, Россия) до 1382 МВт (атомная станция Фламанвиль, Франция). На этапе строительства находятся блок Фламанвиль с мощностью 1650 МВт, атомные станции Южной Кореи Син-Кори с мощностью АЭС в 1400 МВт.

Стоимость АЭС

АЭС, что это? Это и большие деньги. Сегодня людям нужны любые способы добычи электроэнергии. Водяные, тепловые и атомные электростанции повсеместно строятся в более или менее развитых странах. Строительство атомной станции – процесс не из легких, требует больших затрат и капиталовложений, чаще всего денежные ресурсы черпаются из государственных бюджетов.

В стоимость АЭС входят капитальные затраты — расходы на подготовку площади, строительство, введение оборудования в эксплуатацию (суммы капитальных расходов запредельные, к примеру, один парогенератор АЭС стоит больше 9ти миллионов долларов). Кроме того ядерные станции требуют и эксплуатационных расходов, которые включают в себя покупку топлива, расходы на его утилизацию и проч.

По многим причинам официальная стоимость ядерной станции высчитывается лишь приблизительно, сегодня ядерная станция обойдется примерно в 21-25 миллиардов евро. С нуля построить один атомный блок обойдется примерно в 8 миллионов долларов. В среднем срок окупаемости одной станции – 28 лет, срок эксплуатации – 40 лет. Как видно, атомные станции – достаточно дорогое удовольствие, но, как мы выяснили, невероятно нужное и полезное для нас с вами.


Активная зона энергетического ядерного реактора (а.з.ЭЯР) - это часть его объёма, в которой конструктивно организованы условия для осуществления непрерывной самоподдерживающейся цепной реакции деления ядерного топлива и сбалансированного отвода генерируемого в нём тепла с целью его последующего использования.

Вдумавшись в смысл этого определения применительно к активной зо-не теплового ЭЯР, можно понять, что принципиальными компонентами такой активной зоны являются ядерное топливо, замедлитель, теплоноситель и другие конструкционные материалы Последние объективно необходимы, так как ядерное топливо и замедлитель в активной зоне и сама активная зона должны быть неподвижно зафиксированы в реакторе, представляя собой по возможности разборный технологический агрегат.

Под ядерным топливом обычно понимается совокупность всех делящихся нуклидов в активной зоне. Большинство ис-пользуемых в энергоблоках АЭС тепловых ЭЯР в начальной стадии эксплуа-тации работают на чисто урановом топливе, но в процессе кампании в них воспроизводится существенное количество вторичного ядерного топлива - плутония-239, который сразу после его образования включается в процесс размножения нейтронов в реакторе. Поэтому топливом в таких ЭЯР в любой произвольный момент кампании надо считать совокупность трёх делящихся компонентов: 235 U, 238 U и 239 Pu. Уран-235 и плутоний-239 делятся нейтронами любых энергий реакторного спектра, а 238 U, как уже отмечалось, только быстрыми надпороговыми (с Е > 1.1 МэВ) нейтронами.

Основной характеристикой уранового ядерного топлива является его начальное обогащение (x), под которым понимается доля (или процентное содержание) ядер урана-235 среди всех ядер урана. А поскольку на более чем 99.99% уран состоит из двух изотопов - 235 U и 238 U, то величина обогащения:
x = N 5 /N U = N 5 /(N 5 +N 8) (4.1.1)
В природном металлическом уране содержится приблизительно 0.71% ядер 235 U, а более 99.28% составляет 238 U. Прочие изотопы урана (233 U, 234 U, 236 U и 237 U) присутствуют в природном уране в настолько незначи-тельных количествах, что могут не приниматься во внимание.

В реакторах АЭС используется уран, обогащенный до 1.8 ÷ 5.2%, в ре-акторах морских транспортных ядерных энергоустановок начальное обога-щение ядерного топлива составляет 20 ÷ 45%. Использование топлива низких обогащений на АЭС объясняется экономическими соображениями: технология производства обогащённого топлива сложна, энергоёмка, требует сложного и громоздкого оборудования, а потому является дорогой технологией.

Металлический уран термически не стоек, подвержен аллотропным превращениям при относительно невысоких температурах и химически нестабилен, а потому неприемлем в качестве топлива энергетических реакторов. Поэтому уран в реакторах используется не в чисто металлическом виде, а в форме химических (или металлургических) соединений с другими химическими элементами. Эти соединения называются топливными композициями.

Наиболее распространенные в реакторной технике топливные компози-ции:
UO 2 , U 3 O 8 , UC, UC 2 , UN, U 3 Si, (UAl 3)Si, UBe 13 .

Другой (другие) химический элемент топливной композиции называют разжижителем топлива. В первых двух из перечисленных топливных компо-зиций разжижителем является кислород, во вторых двух - углерод, в по-следующих соответственно азот, кремний, алюминий с кремнием и бериллий.
Основные требования к разжижителю - те же, что и замедлителю в ре-акторе: он должен иметь высокое микросечение упругого рассеяния и воз-можно более низкое микросечение поглощения тепловых и резонансных ней-тронов.

Наиболее распространенной топливной композицией в энергетических реакторах АЭС является диоксид урана (UO 2) , и его разжижитель - кисло-род - в полной мере отвечает всем упомянутым требованиям.

Температура плавления диоксида (2800 o С) и его высокая термическая устойчивость позволяют иметь высокотемпературное топливо с допустимой рабочей температурой до 2200 о С.

Загрузка...