last-tochka.ru

Что означает утверждение кпд газовой турбины 40. Паровые и газовые турбины: назначение, принцип действия, конструкции, технические характеристики, особенности эксплуатации. Газопоршневые установки против газотурбинных двигателей - эксплуатационные затраты

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков - "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин - сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого - газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

Паровая турбина. Попытки сконструировать паровую турбину, способную конкурировать с паровой машиной, до середины XIX в. были безуспешными, так как в механическую энергию вращения турбины удавалось преобразовать лишь незначительную долю кинетической энергии струи пара. Дело в том, что изобретатели

не учитывали зависимость КПД турбины от соотношения скорости пара и линейной скорости лопаток турбины.

Выясним, при каком соотношении скорости струи газа и линейной скорости лопатки турбины произойдет наиболее полная передача кинетической энергии струи газа лопатке турбины (рис. 36). При полной передаче кинетической энергии пара лопатке турбины скорость струи относительно Земли должна быть равна нулю, т.е.

В системе отсчета, движущейся со скоростью скорость струи равна: .

Так как в этой системе отсчета лопатка в момент взаимодействия со струей неподвижна, то скорость струи после упругого отражения остается неизменной по модулю, но меняет направление на противоположное:

Переходя вновь в систему отсчета, связанную с Землей, получим скорость струи после отражения:

Так как то

Мы получили, что полная передача кинетической энергии струи турбине будет происходить при условии, когда линейная скорость движения лопаток турбины вдвое меньше скорости струи Первая паровая турбина, нашедшая практическое применение, была изготовлена шведским инженером Густавом Лавалем в 1889 г. Ее мощность была меньше при частоте вращения об/мин.

Рис. 36. Передача кинетической энергии струи пара лопатке турбины

Большая скорость истечения газа даже при средних перепадах давлений, составляющая примерно 1200 м/с, требует для эффективной работы турбины придания ее лопаткам линейной скорости около 600 м/с. Следовательно, для достижения высоких значений КПД турбина должна быть быстроходной. Нетрудно подсчитать силу инерции, действующую на лопатку турбины массой 1 кг, расположенную на ободе ротора радиусом 1 м, при скорости лопатки 600 м/с:

Возникает принципиальное противоречие: для экономичной работы турбины требуются сверхзвуковые скорости вращения ротора, но при таких скоростях турбина разрушится силами инерции. Для разрешения этого противоречия приходится конструировать турбины, вращающиеся со скоростью, меньшей оптимальной, но для полного использования кинетической энергии струи пара делать их многоступенчатыми, насаживая на общий вал несколько роторов возрастающего диаметра. Из-за недостаточно большой скорости вращения турбины пар отдает только часть своей кинетической энергии ротору меньшего диаметра. Затем отработавший в первой ступени пар направляется на второй ротор большего диаметра, отдавая его лопаткам часть оставшейся кинетической энергии и т. д. Отработавший пар конденсируется в охладителе-конденсаторе, а теплая вода направляется в котел.

Цикл паротурбинной установки в координатах показан на рисунке 37. В котле рабочее тело получает количество тепла нагревается и расширяется при постоянном давлении (изобара АВ). В турбине пар адиабатически расширяется (адиабата ВС), совершая работу по вращению ротора. В конденсаторе-охладителе, омываемом, например, речной водой, пар отдает воде количество тепла и конденсируется при постоянном давлении. Этому процессу соответствует изобара . Теплая вода из конденсатора насосом подается в котел. Этому процессу соответствует изохора Как видно, цикл паротурбинной установки замкнутый. Работа пара за один цикл численно равна площади фигуры ABCD.

Современные паровые турбины обладают высоким КПД преобразования кинетической

Рис. 37. Диаграмма рабочего цикла паротурбинной установки

энергии струи пара в механическую энергию, несколько превышающим 90%. Поэтому электрические генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.

Так как температура пара, применяемого в современных паротурбинных установках, не превышает 580 С (температура нагревателя ), а температура пара на выходе из турбины обычно не ниже 30 °С (температура холодильника ), максимальное значение КПД паротурбинной установки как тепловой машины равно:

а реальные значения КПД паротурбинных конденсационных электростанций достигают лишь около 40%.

Мощность современных энергоблоков котел - турбина - генератор достигает кВт. На очереди в 10-й пятилетке сооружение энергоблоков мощностью до кВт.

Паротурбинные двигатели нашли широкое применение на водном транспорте. Однако их применению на сухопутном транспорте и тем более в авиации препятствует необходимость иметь топку и котел для полу ения пара, а также большое количество воды для использования в качестве рабочего тела.

Газовые турбины. Мысль об устранении топки и котла в тепловой машине с турбиной путем перенесения места сжигания топлива в само рабочее тело давно занимала конструкторов. Но разработка таких турбин внутреннего сгорания, в которых рабочим телом является не пар, а расширяющийся от нагревания воздух, сдерживалась отсутствием материалов, способных работать длительное время при высоких температурах и больших механических нагрузках.

Газотурбинная установка состоит из воздушного компрессора 1, камер сгорания 2 и газовой турбины 3 (рис. 38). Компрессор состоит из ротора, укрепленного на одной оси с турбиной, и неподвижного направляющего аппарата.

При работе турбины ротор компрессора вращается. Лопатки ротора имеют такую форму, что при их вращении давление перед компрессором понижается, а за ним повышается. Воздух засасывается в компрессор, и давление его за первым рядом лопаток ротора повышается. За первым рядом лопаток ротора расположен ряд лопаток неподвижного направляющего аппарата компрессора, с помощью которого изменяется направление движения воздуха и обеспечивается возможность его дальнейшего сжатия с помощью лопаток второй ступени ротора и т. д. Несколько ступеней лопаток компрессора обеспечивают позышенне давления воздуха в 5-7 раз.

Процесс сжатия протекает адиабатически, поэтому температура воздуха значительно повышается, достигая 200 °С и более.

Рис. 38. Устройство газотурбинной установки

Сжатый воздух поступает в камеру сгорания (рис. 39). Одновременно через форсунку в нее впрыскивается под большим давлением жидкое топливо - керосин, мазут.

При горении топлива воздух, служащий рабочим телом, получает некоторое количество тепла и нагревается до температуры 1500-2200 °С. Нагревание воздуха происходит при постоянном давлении, поэтому воздух расширяется и скорость его движения увеличивается.

Движущиеся с большой скоростью воздух и продукты горения направляются в турбину. Переходя от ступени к ступени, они отдают свою кинетическую энергию лопаткам турбины. Часть полученной турбиной энергии расходуется на вращение компрессора, а остальная используется, например, для вращения винта самолета или ротора электрического генератора.

Для предохранения лопаток турбины от разрушающего действия раскаленной и высокоскоростной газовой струи в камеру сгорания

Рис. 39. Камера сгорания

нагнетается с помощью компрессора значительно больше воздуха, чем необходимо для полного сжигания топлива. Воздух, входящий в камеру сгорания за зоной горения топлива (рис. 38), снижает температуру газовой струи, направляемой на лопатки турбины. Понижение температуры газа в турбине ведет к снижению КПД, поэтому ученые и конструкторы ведут поиски путей повышения верхнего предела рабочей температуры в газовой турбине. В некоторых современных авиационных газотурбинных двигателях температура газа перед турбиной достигает 1330 °С.

Отработавший воздух вместе с продуктами сгорания при давлении, близком к атмосферному, и температуре более 500 °С со скоростью более 500 м/с обычно выбрасывается в атмосферу либо для повышения КПД направляется в теплообменник, где отдает часть тепла на нагревание воздуха, поступающего в камеру сгорания.

Цикл работы газотурбинной установки на диаграмме представлен на рисунке 40. Процессу сжатия воздуха в компрессоре соответствует адиабата АВ, процессу нагревания и расширения в камере сгорания - изобара ВС. Адиабатический процесс расширения горячего газа в турбине представлен участком CD, процесс охлаждения и уменьшения объема рабочего тела представлен изобарой DA.

КПД газотурбинных установок достигает значений 25-30%. У газотурбинных двигателей нет громоздких паровых котлов, как у паровых машин и паровых турбин, нет поршней и механизмов, преобразующих возвратно-поступательное движение во вращательное, как у паровых машин и двигателей внутреннего сгорания. Поэтому газотурбинный двигатель занимает втрое меньше места, чем дизель той же мощности, а его удельная масса (отношение массы к мощности) в 6 - 9 раз меньше, чем у авиационного поршневого двигателя внутреннего сгорания. Компактность и быстроходность в сочетании с большой мощностью на единицу массы определили первую практически важную область применения газотурбинных двигателей - авиацию.

Самолеты с винтом, насаженным на вал газотурбинного двигателя, появились в 1944 г. Турбовинтовые двигатели имеют такие известные самолеты, как АН-24, ТУ-114, ИЛ-18, АН-22 - «Антей».

Максимальная масса «Антея» на взлете 250 т, грузоподъемность 80 т, или 720 пассажиров,

Рис. 40. Диаграмма рабочего цикла газотурбинной установки

скорость 740 км/ч, мощность каждого из четырех двигателей кВт.

Газотурбинные двигатели начинают вытеснять паротурбинные на водном транспорте, особенно на кораблях военно-морского флота. Переход от дизельных двигателей на газотурбинные позволил увеличить грузоподъемность судов на подводных крыльях в четыре раза, с 50 до 200 т.

Газотурбинные двигатели мощностью 220-440 кВт устанавливаются на большегрузных автомобилях. Проходит испытание в горнодобывающей промышленности 120-тонный БелАЗ-549В с газотурбинным двигателем.

В статье рассказывается о том, как вычисляется КПД простейшей ГТУ, даны таблицы разных ГТУ и ПГУ для сравнения их КПД и других характеристик.

В области промышленного использования газотурбинных и парогазовых технологий Россия значительно отстала от пере­довых стран мира.

Мировые лидеры в производстве газовых и парогазовых энергоустановок большой мощности: GE, Siemens Wistinghouse, ABB - достигли значений единичной мощности газотурбинных установок 280-320 МВт и КПД свыше 40 %, с утилизационной паросиловой надстройкой в парогазовом цикле (называемом также бинарным) - мощности 430-480 МВт при КПД до 60 %. Если есть вопросы по надежности ПГУ - то читайте статью.

Эти впечатляющие цифры служат в качестве ори­ентиров при определении путей развития энергомашиностро­ения России.

Как определяется КПД ГТУ

Приведем пару простых формул, чтобы показать, что такое КПД газотурбинной установки:

Внутренняя мощность турбины:

  • Nт = Gух * Lт, где Lт – работа турбины, Gух – расход уходящих газов;

Внутренняя мощность ГТУ:

  • Ni гту = Nт – Nк, где Nк – внутренняя мощность воздушного компрессора;

Эффективная мощность ГТУ:

  • Nэф = Ni гту * КПД мех, КПД мех – КПД связанный с механическими потерями в подшипниках, можно принимать 0,99

Электрическая мощность:

  • Nэл = Ne * КПД эг, где КПД эг – КПД связанный с потерями в электрическом генераторе, можно принять 0,985

Располагаемая теплота топлива:

  • Q расп = Gтоп * Qрн, где Gтоп – расход топлива, Qрн – низшая рабочая теплота сгорания топлива

Абсолютный электрический КПД газотурбинной установки:

  • КПДэ = Nэл/Q расп

КПД ПГУ выше, чем КПД ГТУ так как в Парогазовой установке используется тепло уходящих газов ГТУ. За газовой турбиной устанавливается котел-утилизатор в котором тепло от уходящих газов ГТУ передается рабочему телу (питательной воде) , сгенерированный пар отправляется в паровую турбину для генерации электроэнергии и тепла.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

КПД ПГУ обычно представляют соотношением:

  • КПД пгу = КПД гту*B+(1-КПД гту*B)*КПД псу

B – степень бинарности цикла

КПД псу – КПД паросиловой установки

  • B = Qкс/(Qкс+Qку)

Qкс – теплота топлива, сжигаемого в камере сгорания газовой турбины

Qку – теплота дополнительного топлива сжигаемого в котле-утилизаторе

При этом отмечают, что если Qку = 0, то B = 1, т. е. установка является полностью бинар­ной.

Влияние степени бинарности на КПД ПГУ

B КПД гту КПД псу КПД пгу
1 0,32 0,3 0,524
1 0,36 0,32 0,565
1 0,36 0,36 0,590
1 0,38 0,38 0,612
0,3 0,32 0,41 0,47
0,4 0,32 0,41 0,486
0,3 0,36 0,41 0,474
0,4 0,36 0,41 0,495
0,3 0,36 0,45 0,51
0,4 0,36 0,45 0,529

Давайте приведем последовательно таблицы с характеристиками эффективности ГТУ и вслед за ними показатели ПГУ с этими газовыми машинами, и сравним КПД отдельной ГТУ и КПД ПГУ.

Характеристики современных мощных ГТУ

Газовые турбины фирмы ABB

Характеристика Модель ГТУ
GT26ГТУ с промперегревом GT24ГТУ с промперегревом
Мощность ISO МВт 265 183
КПД % 38,5 38,3
30 30
562 391
1260 1260
610 610
50 50

Парогазовые установки с газовыми турбинами ABB

Газовые турбины фирмы GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Мощность ISO МВт 159 226,5 240 282
КПД % 35,9 35,7 39,5 39,5
Степень повышения давления компрессора 14,7 14,7 23,2 23,2
Расход рабочего тела на выхлопе ГТУ кг/с 418 602 558 685
Начальная температура, перед рабочими лопатками 1 ст. С 1288 1288 1427 1427
Температура рабочего тела на выхлопе С 589 589 572 583
Частота вращения генератора 1/с 60 50 60 50

Читайте также: Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок.

Парогазовые установки с газовыми турбинами GE

Характеристика Модель ГТУ
MS7001FA MS9001FA MS7001G MS9001G
Состав газотурбинной части ПГУ 1хMS7001FA 1хMS9001FA 1хMS9001G 1хMS9001H
Модель ПГУ S107FA S109FA S109G S109H
Мощность ПГУ МВт 259.7 376.2 420.0 480.0
КПД ПГУ % 55.9 56.3 58.0 60.0

Газовые турбины фирмы Siemens

Характеристика Модель ГТУ
V64.3A V84.3A V94.3A
Мощность ISO МВт 70 170 240
КПД % 36,8 38 38
Степень повышения давления компрессора 16,6 16,6 16,6
Расход рабочего тела на выхлопе ГТУ кг/с 194 454 640
Начальная температура, перед рабочими лопатками 1 ст. С 1325 1325 1325
Температура рабочего тела на выхлопе С 565 562 562
Частота вращения генератора 1/с 50/60 60 50

Парогазовые установки с газовыми турбинами Siemens

Газовые турбины Westinghouse-Mitsubishi-Fiat

Характеристика Модель ГТУ
501F 501G 701F 701G1 701G2
Мощность ISO МВт 167 235,2 251,1 271 308
КПД % 36,1 39 37 38,7 39
Степень повышения давления компрессора 14 19,2 16,2 19 21
Расход рабочего тела на выхлопе ГТУ кг/с 449,4 553,4 658,9 645 741
Начальная температура, перед рабочими лопатками 1 ст. С 1260 1427 1260 1427 1427
Температура рабочего тела на выхлопе С 596 590 569 588 574
Частота вращения генератора 1/с 60 60 50 50 50

Турбиной называется двигатель, в лопаточном аппарате которого потенциальная энергия сжимаемой жидкости превращается в кинетическую энергию, а последняя в рабочих колесах – в механическую работу, передаваемую непрерывно вращающемуся валу.

Паровые турбины по своей конструкции представляют тепловой двигатель, который постоянно находится в работе. В период эксплуатации перегретый или насыщенный пар воды, который поступает в проточную часть, и благодаря своему расширению принуждает вращаться ротор. Вращение происходит в результате воздействия на лопаточный аппарат потока пара.

Турбина паровая входит в состав паротурбинной конструкции, которая предназначена для вырабатывания энергии. Также существуют установки, способные кроме электроэнергии вырабатывать тепловую энергию – пар, прошедший через лопатки пар, поступает на нагреватели сетевой воды. Подобный вид турбин именуется промышленно-теплофикационным или теплофикационным типом турбин. В первом случае, в турбине отбор пара предусмотрен для промышленных целей. В комплекте с генератором паровая турбина представляет турбоагрегат.

Типы паровых турбин

Турбины делятся, в зависимости от того, в каком направлении движется пар, на радиальные и аксиальные турбины. Паровой поток в радиальных турбинах направлен перпендикулярно оси. Паровые турбины могут быть одно-, двух- и трехкорпусные. Паровая турбина снабжена разнообразными техническими устройствами, которые предупреждают попадание внутрь корпуса окружающего воздуха. Это разнообразные уплотнители, на которые подается водяной пар в небольшом количестве.

На переднем участке вала размещается регулятор безопасности, предназначенный для отключения паровой подачи при увеличении частоты вращения турбины.

Характеристика основных параметров номинальных значений

· Номинальная мощность турбины - наибольшая мощность, которую турбина должна длительно развивать на зажимах электрогенератора, при нормальных величинах основных параметров или при изменении их в пределах, оговоренных отраслевыми и государственными стандартами. Турбина с регулируемым отбором пара может развивать мощность выше номинальной, если это соответствует условиям прочности её деталей.

· Экономическая мощность турбины - мощность, при которой турбина работает с наибольшей экономичностью. В зависимости от параметров свежего пара и назначения турбины номинальная мощность может быть равна экономической или более её на 10-25 %.

· Номинальная температура регенеративного подогрева питательной воды - температура питательной воды за последним по ходу воды подогревателем.

· Номинальная температура охлаждающей воды - температура охлаждающей воды при входе в конденсатор.

Газовая турбина (фр. turbine от лат. turbo вихрь, вращение ) - это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Состоит из ротора (рабочие лопатки, закреплённые на дисках) и статора (направляющие лопатки, закреплённые в корпусе).

Газ, имеющий высокую температуру и давление, поступает через сопловой аппарат турбины в область низкого давления за сопловой частью, попутно расширяется и ускоряется. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Полезные свойства газовой турбины: газовая турбина, например, приводит во вращение находящийся с ней на одном валу генератор, что и является полезной работой газовой турбины.

Газовые турбины используются в составе газотурбинных двигателей (применяются для транспорта) и газотурбинных установок (применяются на ТЭЦ в составе стационарных ГТУ, ПГУ). Газовые турбины описываются термодинамическим циклом Брайтона, в котором сначала происходит адиабатическое сжатие воздуха, затем сжигание при постоянном давлении, а после этого осуществляется адиабатическое расширение обратно до стартового давления.

Типы газовых турбин

- Авиационные и реактивные двигатели

- Вспомогательная силовая установка

- Промышленные газовые турбины для производства электричества

- Турбовальные двигатели

- Радиальные газовые турбины

- Микротурбины

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал / компрессор / турбина / альтернативный ротор в сборе (см. изображение выше), не учитывая топливную систему.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.

Силовыми агрегатами - приводами электрических генераторов для автономных малых тепловых электростанций могут быть дизельные, газопоршневые, микротурбинные и газотурбинные двигатели.

О преимуществах тех или иных генерационных установок и технологий написано большое количество дискуссионных и полемических статей. Как правило, в спорах в загоне, в опале часто остаются либо те либо другие. Попробуем разобраться, почему.

Определяющими критериями выбора силовых агрегатов для строительства автономных электростанций являются вопросы расхода топлива, уровень эксплуатационных затрат, а также срок окупаемости оборудования электростанции.

Важными факторами выбора силовых агрегатов являются простота эксплуатации, уровень технического обслуживания и ремонта, а также место выполнения ремонта силовых агрегатов. Эти вопросы связаны, прежде всего, с расходами и проблемами, которые может иметь впоследствии владелец автономной электростанции.

В данной статье у автора нет корыстной цели расставить приоритеты в пользу поршневой или турбинной технологий. Типы силовых установок электростанций правильнее, оптимальнее всего подбирать непосредственно к проекту, исходя из индивидуальных условий и технического задания заказчика.

При выборе силового оборудования для строительства автономной газовой ТЭЦ желательно консультироваться с независимыми специалистами из инжиниринговых компаний уже осуществляющих строительство электростанций «под ключ». Инжиниринговая компания должна иметь реализованные проекты, на которые можно посмотреть и посетить с экскурсией. Следует учитывать и такой фактор, как слабость и неразвитость рынка генерационного оборудования в России, реальные объемы продаж на котором, в сравнении с развитыми странами, невелики и оставляют желать лучшего – это, прежде всего, отображается на объеме и качестве предложений.

Газопоршневые установки против газотурбинных двигателей - эксплуатационные затраты

Действительно ли, что эксплуатационные затраты на мини–ТЭЦ с поршневыми машинами ниже, чем затраты на эксплуатацию электростанции с газовыми турбинами?

Стоимость капитального ремонта газопоршневого двигателя может составлять 30–350% от первоначальной стоимости самого силового агрегата, а не всей электростанции - при капремонте осуществляется замена поршневой группы. Ремонт газопоршневых установок можно производить на месте без сложного диагностического оборудования один раз в 7-8 лет.

Цена ремонта газотурбинной установки составляет 30–50% от начальных вложений. Как видите, затраты примерно равны. Реальные, честные цены на сами газотурбинные и поршневые агрегаты сопоставимой мощности и качества также схожи.

Капитальный ремонт газотурбинной установки ввиду его сложности на месте не производится. Поставщик должен увезти отработанный блок и привезти сменный газотурбинный блок. Старый блок может быть восстановлен только в заводских условиях.

Всегда следует учитывать соблюдение графика регламентных работ, характер нагрузок и режимы эксплуатации электростанции, вне зависимости от типа установленных силовых агрегатов.

Вопрос, который часто муссируется, о привередливости турбины к условиям эксплуатации, связан с устаревшей информацией сорокалетней давности. Тогда «на земле», в приводе электростанций, использовались авиационные турбины, «снятые с крыла» самолета. Такие турбины с минимальными изменениями приспосабливались к работе в качестве основных силовых агрегатов для электростанций.

Сегодня на современных автономных электростанциях применяются турбины промышленного, индустриального исполнения, рассчитанные на непрерывную работу с различными нагрузками.

Нижний предел минимальной электрической нагрузки, официально заявляемый заводами-производителями для индустриальных турбин, составляет 3–5%, но в таком режиме расход по топливу возрастает на 40%. Максимальная нагрузка газотурбинной установки, в ограниченных временных интервалах может достигать 110-120%.

Современные газопоршневые установки обладают феноменальной экономичностью, базирующейся на высоком уровне электрического КПД. «Проблемы», связанные с работой газопоршневых установок на малых нагрузках, решаются положительно еще на стадии проектирования. Проектирование должно быть качественным.

Cоблюдение рекомендованного заводом-изготовителем режима эксплуатации продлит жизнь деталям двигателя, сэкономив таким образом деньги владельцу автономной электростанции. Иногда, чтобы вывести газопоршневые машины в номинальный режим при частичных нагрузках, в проект тепловой схемы станции включаются один-два электрических котла, которые и позволяют обеспечить желаемые 50% нагрузки.

Для электростанций на базе газопоршневых установок и газовых турбин важным является соблюдение правила N+1 - количество действующих агрегатов плюс еще один - для резерва. “N+1” - это удобное, рациональное для эксплуатирующего персонала количество установок. Это обусловлено тем, что для силовых установок любых типов и видов надо проводить регламентные и ремонтные работы.

Предприятию, подключенному к сети, можно смонтировать только одну установку и пользоваться собственной электроэнергией по себестоимости, а во время техобслуживания питаться от общей электросети, платя по счетчику. Это дешевле, чем «+1», но, к сожалению, не всегда выполнимо. Связано это, как правило, с отсутствием электросети вообще, либо с неимоверной дороговизной технических условий на само подключение.

Недобросовестные дилеры газопоршневых установок и газовых турбин до продажи оборудования покупателю, как правило, предоставляют только проспекты - коммерческую литературу общего плана и крайне редко - точные сведения о полных эксплуатационных расходах и производимых технических регламентах.

На мощных газопоршневых установках масло менять не требуется. При постоянной работе оно просто вырабатывается, не успевая стареть. Масло на таких установках постоянно доливается. Подобные режимы эксплуатации предусмотрены особой конструкцией мощных газопоршневых двигателей и рекомендованы заводом-изготовителем.

Угар моторного масла составляет 0,25–0,45 грамма на один произведенный киловатт в час. Угар всегда выше при снижении нагрузки. Как правило, в комплект газопоршневого двигателя входит специальный резервуар для непрерывного долива масла, и мини-лаборатория для проверки его качества и определения срока замены.

Соответственно, подлежат замене и масляные фильтры или картриджи в них.

Так как моторное масло все же выгорает, поршневые агрегаты имеют чуть более высокий уровень вредных выбросов в атмосферу, нежели газотурбинные установки. Но так как газ сгорает полностью и является одним из самых чистых видов топлива, то говорить о серьезных загрязнениях атмосферы - только «шашки тупить». Пару старых венгерских автобусов «Икарус» наносят экологии куда более серьезный вред. Для соответствия требованиям по экологии, при использовании поршневых машин, надо строить более высокие дымовые трубы, с учетом уже имеющегося уровня ПДК в окружающей среде.

Отработанное масло газопоршневых установок нельзя просто вылить на землю - оно требует утилизации - это «расходы» для владельцев электростанции. Но на этом можно и заработать - отработанное моторное масло покупают специализированные организации.

Многие из нас используют моторное масло в поршневых двигателях автомобилей. Если двигатель исправен, правильно эксплуатируется и заправляется нормальным топливом, то никаких финансовых катаклизмов, связанных с его расходом, не происходит.

То же самое и на поршневых электростанциях: - расхода моторного масла бояться не нужно, оно вас не разорит, при нормальной эксплуатации современных качественных газопоршневых установок затраты по этой статье составляют всего 2-3 (!) копейки на 1 кВт выработанной электроэнергии.

В современных газотурбинных установках масло используется только в редукторе. Его объем можно считать незначительным. Замена редукторного масла в ГТУ производится в среднем 1 раз в 3-5 лет, а его долив не требуется.

Для проведения сервиса в полном объеме в комплект мощной газопоршневой установки должна входить кран–балка. При помощи кран–балки снимают тяжелые детали поршневых двигателей. Использование кран–балки требует высоких потолков помещения для машинных залов поршневой электростанции. Для ремонта газопоршневых установок малой и средней мощности можно обходиться более простыми подъемными механизмами.

Газопоршневые электростанции при поставке могут комплектоваться различными ремонтными инструментами и приспособлениями. Его наличие предполагает, что даже все ответственные операции можно производить силами квалифицированного персонала на месте. Фактически все ремонтные работы с газовыми турбинами можно проводить либо на заводе-изготовителе, либо при непосредственной помощи заводских специалистов.

Один раз в 3–4 месяца требуется замена свечей зажигания. Замена свечей - это всего 1-2 (!) копейки в себестоимости 1 кВт/ч собственной электроэнергии.

Поршневые агрегаты, в отличие от газотурбинных установок, имеют жидкостное охлаждение, соответственно персоналу автономной электростанции необходимо постоянно следить за уровнем охлаждающей жидкости и осуществлять периодическую замену, а если это вода, то требуется обязательно осуществлять её химическую подготовку.

Вышеперечисленные особенности эксплуатации поршневых агрегатов отсутствуют у газотурбинных установок. В газотурбинных установках не используется такие расходные материалы и компоненты, как:

  • моторное масло,
  • свечи зажигания,
  • масляные фильтры,
  • охлаждающая жидкость,
  • наборы высоковольтных проводов.

Но ГТУ на месте не отремонтируешь и гораздо больший расход газа невозможно сопоставлять с затратами на эксплуатацию и расходные материалы для поршневых установок.

Что выбрать? Газопоршневые или газотурбинные установки?

Как соотносятся мощность силовых агрегатов электростанций и температура окружающей среды?

При значительном повышении температуры окружающей среды мощность газотурбинной установки падает. Но при понижении температуры электрическая мощность газотурбинной установки наоборот, растет. Параметры электрической мощности, по существующим стандартам ISO, измеряются при t +15 °C.

Иногда важным моментом является и то, что газотурбинная установка способна отдать в 1,5 раза больше бесплатной тепловой энергии, нежели поршневой агрегат аналогичной мощности. При использовании мощной (от 50 МВт) автономной ТЭЦ в коммунальном хозяйстве, например, это может иметь определяющее значение при выборе типа силовых агрегатов, особенно при большом и равномерном потреблении именно тепловой энергии.

Наоборот, там где тепло не требуется в больших количествах, а нужен акцент именно на производстве электрической энергии, будет экономически целесообразнее использование газопоршневых установок.

Высокая температура на выходе газотурбинных установок позволяет использовать в составе электростанции паровую турбину. Это оборудование бывает востребованным, если потребителю необходимо получить максимальное количество электрической энергии при одном и том же объеме потраченного газового топлива, и таким образом достичь высокого электрического КПД - до 59%. Энергокомплекс такой конфигурации сложнее в эксплуатации и стоит он на 30-40% дороже обычного.

Электростанции, имеющие в своей структуре паровые турбины, как правило, рассчитаны на довольно большую мощность - от 50 МВт и выше.

Поговорим о самом главном: газопоршневые установки против газотурбинных силовых агрегатов - КПД

КПД силовой установки более чем актуален - ведь он влияет на расход топлива. Средний удельный расход газового топлива на 1 выработанный кВт/час значительно меньше у газопоршневой установки, причем при любом режиме нагрузки (хотя длительные нагрузки менее 25% противопоказаны для поршневых двигателей).

Электрический КПД поршневых машин составляет 40–44%, а газовых турбин - 23–33% (в парогазовом цикле турбина способна выдать КПД достигающий 59%).

Парогазовый цикл применяется при высокой мощности электростанций - от 50-70 МВт.

Если Вам надо изготовить локомотив, самолет или морское судно, то можно считать одним из определяющих показателей именно коэффициент полезного действия (КПД) силовой установки. Тепло, которое получается в процессе работы двигателя локомотива, самолета (или судна) не используется и выбрасывается в атмосферу.

Но мы строим не локомотив, а электростанцию и при выборе типа силовых агрегатов для автономной электростанции подход несколько иной - здесь необходимо говорить о полноте использования сгораемого топлива - коэффициенте использования топлива (КИТ).

Сгорая, топливо производит основную работу - вращает генератор электростанции. Вся остальная энергия сгорания топлива - это тепло, которое можно и нужно использовать. В этом случае так называемый, «общий КПД», а вернее коэффициент использования топлива (КИТ) электростанции будет порядка 80-90%.

Если потребитель рассчитывает использовать тепловую энергию автономной электростанции в полном объеме, что обычно маловероятно, то коэффициент полезного действия (КПД) автономной электростанции не имеет практического значения.

При снижении нагрузки до 50% электрический КПД газовой турбины снижается.

Кроме того, турбинам требуется высокое входное давление газа, а для этого обязательно устанавливают компрессоры (поршневые) и они также повышают расход топлива.
Сравнение газотурбинных установок и газопоршневых двигателей в составе мини–ТЭЦ показывает, что установка газовых турбин целесообразна на объектах, которые имеют равномерные электрические и тепловые потребности при мощности свыше 30-40 МВт.

Из вышесказанного следует, что электрический КПД силовых агрегатов разных типов имеет прямую проекцию на расход топлива.

Газопоршневые агрегаты расходуют на четверть, а то и на треть меньше топлива, чем газотурбинные установки – это основная статья расходов!

Соответственно, при схожей или равной стоимости самого оборудования более дешёвая электрическая энергия получается на газопоршневых установках. Газ - это основная расходная статья при эксплуатации автономной электростанции!

Газопоршневые установки против газотурбинных двигателей - входное давление газа

Всегда ли необходимо наличие газопровода высокого давления, в случае применения газовых турбин?

Для всех типов современных силовых агрегатов электростанций давление подводимого газа не имеет практического значения, так как в комплекте газотурбинной установки всегда имеется газовый компрессор, входящий в стоимость энергокомплекса.

Компрессор обеспечивает требуемые рабочие характеристики газового топлива по давлению. Современные компрессоры являются чрезвычайно надежными и малообслуживаемыми агрегатами. В мире современных технологий, как для газопоршневых двигателей, так и для газовых турбин важно лишь наличие должного объема газового топлива для обеспечения нормальной работы автономной электростанции.

Однако не следует забывать, что дожимной компрессор также требует немалой энергии, расходных материалов и обслуживания . Парадоксально, но для мощных турбин часто используются именно поршневые компрессоры.

Газопоршневые двигатели против газотурбинных агрегатов - двухтопливные установки

Часто пишут и говорят, что двухтопливные установки могут быть только поршневыми. Правда ли это?

Это не соответствует действительности. Все известные фирмы-производители газовых турбин имеют в своей гамме двухтопливные агрегаты. Основной особенностью работы двухтопливной установки является ее возможность работы, как на природном газе, так и на дизельном топливе. Благодаря применению в двухтопливной установке двух видов топлива, можно отметить ряд ее преимуществ по сравнению с монотопливными установками:

  • при отсутствии природного газа установка автоматически переходит на работу на дизельном топливе;
  • во время переходных процессов установка автоматически переходит на работу на дизельном топливе.

При выходе на рабочий режим осуществляется обратный процесс перехода на работу на природном газе и дизельном топливе;
Не стоит забывать и о том факте, что первые турбины изначально проектировались для работы именно на жидком топливе - керосине.

Двухтопливные установки имеют все же ограниченное применение и не нужны для большинства автономных ТЭЦ - для этого есть более простые инженерные решения.

Газопоршневые установки против газотурбинных - количество пусков

Каким может быть количество пусков газопоршневых агрегатов?

Количество пусков: газопоршневой двигатель может запускаться и останавливаться неограниченное число раз, и это не отражается на его моторесурсе. Но частые пуски– остановки газопоршневых агрегатов, с потерей питания собственных нужд, могут повлечь за собой износ наиболее нагруженных узлов (подшипников турбонагнетателей, клапанов и т.д.).

Газотурбинную установку из-за резких изменений термических напряжений, возникающих в наиболее ответственных узлах и деталях горячего тракта ГТУ при быстрых пусках агрегата из холодного состояния, предпочтительнее использовать для постоянной, непрерывной работы.

Газопоршневые двигатели электростанций против газотурбинных установок - ресурс до капитального ремонта

Каким может быть ресурс установки до капитального ремонта?

Ресурс до капитального ремонта составляет у газовой турбины 40000–60000 рабочих часов. При правильной эксплуатации и своевременном проведении регламентных работ у газопоршневого двигателя этот показатель также равен 40000–60000 рабочих часов. Однако бывают иные ситуации, когда капремонт наступает гораздо раньше.

Газопоршневые установки против газотурбинных двигателей - капитальные вложения и цены

Какие потребуются капитальные вложения (инвестиции) в строительство электростанции? Какова стоимость строительства автономного энергокомплекса под ключ?

Как показывают расчёты, капиталовложения (доллар/кВт) в строительство тепловой электростанции с газопоршневыми двигателями приблизительно равны с газотурбинными установками. Финская тепловая электростанция WARTSILA мощностью 9 МВт обойдется заказчику ориентировочно в 14 миллионов евро. Аналогичная газотурбинная тепловая электростанция на базе первоклассных агрегатов полностью «под ключ» будет стоить 15,3 миллионов долларов.

Газопоршневые моторы против газотурбинных установок - экология

Каким образом выполняются требования по экологии?

Надо отметить, что газопоршневые установки уступают газотурбинным агрегатам по уровню выбросов NO x . Так как моторное масло выгорает, поршневые агрегаты имеют уровень вредных выбросов в атмосферу чуть больший, чем у газотурбинных агрегатов.

Но это не критично: в СЭС запрашивается уровень фона по ПДК в месте расположения мини-ТЭЦ, После этого делается расчёт рассеивания с тем, чтобы «добавка» вредных веществ от мини-ТЭЦ добавленная к фону не привела к превышению ПДК. Путём нескольких итераций подбирается минимальная высота дымовой трубы, при которой соблюдаются требования СанПиН. Добавка от станции 16 МВт по выбросам NO x не столь значительна: при высоте дымовой трубы 30 м - 0.2 ПДК, при 50 м - 0.1 ПДК.

Уровень вредных выбросов от большинства современных газотурбинных установок не превышает значение 20-30 ppm и в каких-то проектах это может иметь определенное значение.

Поршневые установки при работе имеют вибрации и низкочастотный шум. Доведение шума до стандартных значений возможно, просто необходимы соответствующие инженерные решения. Помимо расчёта рассеивания при разработке раздела проектной документации «Охрана окружающей среды» делается акустический расчёт и проверяется: удовлетворяют ли выбранные проектные решения и применяемые материалы требованиям СанПиН с точки зрения шума.

Любое оборудование излучает шум в определенном спектре частот. Газотурбинные установки сия чаша не миновала.

Газопоршневые установки против газотурбинных двигателей - выводы

При линейных нагрузках и соблюдении правила N+1 применение газопоршневых двигателей в качестве основного источника энергоснабжения возможно. В составе такой электростанции необходимы резервные агрегаты и емкости для хранения второго вида топлива - дизельного.

В диапазоне мощности до 40-50 МВт использование поршневых моторов на мини–ТЭЦ считается абсолютно оправданным.

В случае использования газопоршневых агрегатов потребителю можно полностью уйти от внешнего электроснабжения, но только при обдуманном и взвешенном подходе.

Поршневые установки так же можно применять и в качестве резервных или аварийных источников электроэнергии.

Некая альтернатива поршневым установкам – газовые микротурбины. Правда цены на микротурбины сильно «кусаются» и составляют ~ $2500–4000 за 1 кВт установленной мощности!

Сравнение газотурбинных установок и газопоршневых двигателей в составе мини–ТЭЦ показывает, что установка газовых турбин возможна на любых объектах, которые имеют электрические нагрузки более 14-15 МВт, но из-за высокого расхода газа турбины рекомендуются для электростанций гораздо большей мощности – 50-70 МВт.

Для многих современных генерационных установок 200.000 моточасов эксплуатации не является критической величиной и при соблюдении графика планового технического обслуживания и поэтапной замены частей турбины, подверженных износу: подшипники, инжекторы, различное вспомогательное оборудование (насосы, вентиляторы) дальнейшая эксплуатация газотурбинной установки остается экономически целесообразной. Качественные газопоршневые установки сегодня так же успешно преодолевают 200.000 моточасов эксплуатации.

Это подтверждается современной практикой эксплуатации газотурбинных/газопоршневых установок во всем мире.

При выборе силовых агрегатов автономной электростанции необходимы консультации специалистов!

Советы специалистов, надзор необходимы и при строительстве автономных электростанций. Для решения задачи нужна инжиниринговая компания с опытом работы и реализованными проектами.

Инжиниринг позволяет компетентно, не предвзято и объективно определиться с выбором основного и вспомогательного оборудования для подбора оптимальной конфигурации - комплектации вашей будущей электростанции.

Квалифицированный инжиниринг позволяет сберечь значительные денежные средства заказчика, а это 10–40% от общей суммы затрат. Инжиниринг от профессионалов в сфере электроэнергетики, позволяет избежать дорогостоящих ошибок в проектировании и в выборе поставщиков оборудования.

Загрузка...