last-tochka.ru

Новые технологии прокатного производства. Новые технологии прокатного производства Традиционная технология получения проката сообщение

Исходной заготовкой при прокатке служат слитки: стальные массой до 60 т, из цветных металлов и их сплавов обычно массой до 10 т. При производстве сортовых профилей стальной слиток массой до 15 т в горячем состоянии прокатывают на блюминге, получая заготовки квадратного (или близкого к нему) сечения (от 140X140 до 450x450 мм), называемые блюмами. Затем блюмы поступают на заготовочные станы для прокатки заготовок требуемых размеров или сразу на крупносортные станы для прокатки крупных профилей сортовой стали. На заготовочных и сортовых станах заготовка последовательно проходит через ряд калибров.

Разработку системы последовательных калибров, необходимых для получения того или иного профиля, называют калибровкой. Калибровка является сложным и ответственным процессом. Неправильная калибровка может привести не только к снижению производительности, но и к браку изделий. Чем больше разность в размерах поперечных сечений исходной заготовки и конечного изделия и чем сложнее профиль последнего, тем больше число калибров требуется для его получения. Число калибров может быть различным; например, при прокатке проволоки диаметром 6,5 мм их число достигает 21. После прокатки полосы режут на мерные длины, охлаждают, правят в холодном состоянии, термически обрабатывают, удаляют поверхностные дефекты.

При производстве листового проката стальной слиток массой до 50 т в горячем состоянии прокатывают на слябинге или блюминге, получая заготовку прямоугольного сечения (наибольшей толщиной - 350 и шириной - 2300 мм), называемую слябом.

В настоящее время вместо прокатанных заготовок широко применяют заготовки в виде слябов, полученные непрерывной разливкой. Слябы прокатывают большей частью на непрерывных станах горячей прокатки, состоящих из двух групп рабочих клетей - черновой и чистовой, расположенных друг за другом. Перед каждой группой клетей сбивают окалину в окалиноломателях. После прокатки полосу толщиной 1,2-16 мм сматывают в рулон. К отделочным операциям производства горячекатаного листа относятся резка, травление, термическая обработка и др.

Исходным материалом для холодной прокатки листа толщиной менее 1,5 мм обычно служат горячекатаные рулоны. На современных станах холодной прокатки производят листовую сталь с минимальной толщиной 0,15 мм и ленты с минимальной толщиной 0,0015 мм. Современным способом холодной прокатки является рулонный. Предварительно горячекатаный лист очищают травлением в кислотах с последующей промывкой. Прокатывают на одноклетьевых и многоклетьевых непрерывных четырех валковых станах, а также на многовалковых станах. После холодной прокатки материал проходит отделочные операции: отжиг в защитных газах, нанесение в случае необходимости покрытий, разрезку на мерные листы и др.

При прокатке бесшовных труб первой операцией является прошивка - образование отверстия в слитке или круглой заготовке. Эту операцию выполняют в горячем состоянии на прошивных станах. Наибольшее применение получили прошивные станы с двумя бочкообразными валками, оси которых расположены под небольшим углом (5-15°) друг к другу. Оба валка вращаются в одном и том же направлении, т. е. в данном случае используется принцип поперечно-винтовой прокатки. Благодаря такому расположению валков заготовка получает одновременно вращательное и поступательное движения. При этом в металле возникают радиальные растягивающие напряжения, которые вызывают течение металла от центра в радиальном направлении, образуя внутреннюю полость, и облегчают прошивку отверстия оправкой, устанавливаемой на пути движения заготовки.

Последующую прокатку прошитой заготовки в трубу требуемых диаметра и толщины стенки производят на раскатных станах. Например, при наиболее распространенном методе трубу прокатывают на короткой оправке в так называемом автоматическом двухвалковом стане. Валки образуют последовательно расположенные круглые калибры, зазор между закрепленной на длинном стержне оправкой и ручьями валков определяет толщину стенки трубы. Для устранения неравномерности толщины стенки по сечению и рисок после раскатки производят обкатку труб в обкатных станах, рабочая клеть которых по конструкции аналогична клети прошивного стана. Затем для получения заданного диаметра трубы прокатывают в калибровочном многоклетьевом стане продольной прокатки без оправки; а при необходимости получения труб диаметром менее 80 мм - еще и в редукционных непрерывных станах с рабочими клетями аналогичной конструкции.

Сварные трубы изготовляют из плоской заготовки - ленты (называемой штрипсом) или из листов, ширина которых соответствует длине (или половине длины) окружности трубы. Процесс изготовления сварной трубы включает следующие основные операции: формовка плоской заготовки в трубу, сварка кромок, уменьшение (редуцирование) диаметра полученной трубы. Для сварки чаще применяют следующие способы: печную сварку, сварку сопротивлением и дуговую под слоем флюса. При производстве труб печной сваркой ленту, размотанную с рулона, правят, нагревают в узкой длинной (до 40 м) газовой печи до температуры 1300-1350 °С и формируют в трубу в непрерывном прокатном стане (рис. 3.12). Стан состоит из 6-12 рабочих клетей, в которых валки образуют круглые калибры. При прокатке в калибрах прижимаемые одна к другой кромки, до полнительно нагретые до высокой температуры обдувкой кислородом, свариваются. Выходящую из стана трубу разрезают специальной пилой на куски требуемой длины и далее калибруют на калибровочном стане. Этим способом изготовляют трубы самой низкой стоимости из низкоуглеродистой стали (Ст2кп) диаметром 10-114 мм.



Электросваркой можно получать трубы большого диаметра (до 2500 мм) с тонкой стенкой (до 0,5 мм) из легированных сталей.

При производстве труб сваркой сопротивлением ленты или полосы свертывают в холодном состоянии в трубу в формовочных непрерывных станах. При выходе из формовочного стана трубная заготовка поступает на трубоэлектросварочный стан, где кромки трубы прижимаются друг к другу двумя парами вертикальных валков и одновременно свариваются роликовыми электродами. После сварки трубу калибруют, разрезают на части.

Дуговой сваркой под флюсом изготовляют, трубы с прямыми и спиральными швами. В первом случае подготовленный лист формуют на листогибочных валковых станах или на прессах, затем сваривают, причем швы накладывают снаружи и изнутри трубы. При получении труб со спиральным швом лента, разматываемая с рулона, сворачивается по спирали в трубу, а затем сваривается по кромкам.

Трубы с более тонкой стенкой, высокими качеством поверхности и точностью размеров получают на станах холодной прокатки труб различных типов, а также волочением. В качестве заготовки в этом случае применяют горячекатаные трубы.

Процессы получения специальных видов проката отличаются большим разнообразием. Причем некоторые из них осуществляют на металлургических предприятиях, а другие - на машиностроительных. Особенно большое значение имеет прокатка периодических профилей, которые применяют как фасонную заготовку для последующей штамповки и как заготовку под окончательную механическую обработку. Периодические профили в основном изготовляют поперечной и поперечно-винтовой прокаткой. На станках поперечно-винтовой прокатки получают не только периодические профили, но и заготовки шаров и сферических роликов подшипников качения (рис. 3). Валки 2 и 4 вращаются в одну и ту же сторону. Ручьи валков соответствующей формы сделаны по винтовой линии. Заготовка 1 при прокатке получает вращательное и поступательное движения; от вылета из валков она предохраняется центрирующими упорами 3. Производство других специальных видов проката, осуществляемых чаще на машиностроительных предприятиях.


Рис. 3. Схема прокатки шаров в стане поперечно-винтовой прокатки

5.2 Механический цех

Одна из главных задач машиностроения - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей. Особенно большое внимание уделяется чистовым и отделочным технологическим методам обработки, объем которых в общей трудоемкости обработки деталей постоянно возрастает. Наряду с механической обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергий. Весьма прогрессивны комбинированные методы обработки.

Обработка металлов резанием - это процесс срезания режущим инструментом с поверхности заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей детали. Чтобы срезать с заготовки слой металла, необходимо режущему инструменту и заготовке сообщить относительные движения. Инструмент и заготовку устанавливают и закрепляют в рабочих органах станков, обеспечивающих эти относительные движения: в шпинделе, на столе, в револьверной головке. Движения рабочих органов станов подразделяют на движения резания, установочные и вспомогательные. Движения, которые обеспечивают срезание с заготовки слоя металла или вызывают изменение состояния обработанной поверхности заготовки, называют движениями резания. К ним относят главное движение и движение подачи.

За главное принимают движение, определяющее скорость деформирования и отделения стружки, за движение подачи - движение, обеспечивающее врезание режущей кромки инструмента в материала заготовки. Эти движения могут быть непрерывными или прерывистыми, а по своему характеру вращательными, поступательными, возвратно-поступательными. Скорость главного движения обозначают v, величину подачи -s.

Движение, обеспечивающие взаимное положение инструмента и заготовки для срезания с нее определенного слоя материала, называют установочными. К вспомогательным движениям относят Транспортирование заготовки, закрепление заготовок и инструмента, быстрые перемещения рабочих органов станка и др.

Режущие инструменты в данном производстве работают в условиях больших силовых нагрузок, высоких температур и трения. Поэтому инструментальные материалы должны удовлетворять ряду особых эксплуатационных требований. Материал рабочей части инструмента должен иметь большую твердость и высокие допустимые напряжения на изгиб, растяжение, сжатие, кручение. Твердость материала рабочей части инструмента должна значительно превышать твердость материала заготовки.

Высокие прочностные свойства необходимы, чтобы инструмент обладал сопротивляемостью соответствующим деформациям в процессе резания, а достаточная вязкость материала инструмента позволяла воспринимать ударную динамическую нагрузку, возникающую при обработке заготовок из хрупких материалов и заготовок с прерывистой поверхностью. Инструментальные материалы должны иметь высокую красно стойкость, т. е. сохранять большую твердость при высоких температурах нагрева. Важнейшей характеристикой материала рабочей части инструмента является износостойкость. Чем выше износостойкость, тем медленнее изнашивается инструмент. Это значит, что разброс размеров деталей, последовательно обработанных одним и тем же инструментом, будет минимальным.

В основу классификации металлорежущих станков, принятой в нашей стране, положен технологический метод обработки заготовок. Классификацию по технологическому методу обработки проводят в соответствии с такими признаками, как вид режущего инструмента, характер обрабатываемых поверхностей и схема обработки. Станки делят на токарные, сверлильные, шлифовальные, полировальные и доводочные, зубообрабатывающие, фрезерные, строгальные, разрезные, протяжные, резьбообрабатывающие и т. д.

Классификация по комплексу признаков наиболее полно отражается в общегосударственной Единой системе условных обозначений станков. Она построена по десятичной системе; все металлорежущие станки разделены на десять групп, группа - на десять типов, а тип - на десять типоразмеров. В группу объединены станки по общности технологического метода обработки или близкие по назначению (например, сверлильные и расточные). Типы станков характеризуют такие признаки, как назначение, степень универсальности, число главных рабочих органов, конструктивные особенности. Внутри типа станки различают по техническим характеристикам.

В соответствии с этой классификацией каждому станку присваивают определенный шифр. Первая цифра шифра определяет группу станков, вторая тип, третья (иногда третья и четвертая) показывает условный размер станка. Буква на втором или третьем месте позволяет различать станки одного типоразмера, но с разными техническими характеристиками. Буква в конце шифра указывает на различные модификации станков одной базовой модели. Например, шифром 2Н135 обозначают вертикально-сверлильный станок (группа2, тип 1), модернизированный (Н), с наибольшим условным диаметром сверления 35 мм (35).

Различают станки универсальные, широкого применения, специализированные и специальные. На универсальных станках выполняют самые разнообразные работы, используя заготовки многих наименований. Примерами таких станков могут быть токарно-винторезные, горизонтально-фрезерные консольные и др. Станки широкого назначения предназначены для выполнения определенных работ на заготовках многих наименований (многорезцовые, токарно-отрезные станки). Специализированные станки предназначены для обработки заготовок одного наименования, но разных размеров (например, станки для обработки коленчатых валов). Специальные станки выполняют определенный вид работ на одной определенной заготовке.


6. БЕЗОПАСНОСТЬ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Снижение производственной опасности осуществляется выполнением соответствующих инструкций:

№013- Для работающих на токарных станках, автоматах и полуавтоматах с ЧПУ (2000 год).

№029- Для работающих на металлорежущих станках (2002 год).

6.1 Общие требования безопасности

К обслуживанию механизмов могут быть допущены только те рабочие, которые изучили их устройство и инструкцию по эксплуатации. Перед включением следует удостовериться в исправности механизма и в том, что пуск его никому не угрожает опасностью. Обнаружив во время осмотра какие-либо неисправности в механизме или его предохранительных устройствах, рабочий должен сообщить об этом мастеру и до их устранения к работе не приступать.

Запрещается оставлять работающий механизм без присмотра. Даже при кратковременном отсутствии на рабочем месте следует остановить механизм и сообщить мастеру о своем уходе. Запрещается касаться движущихся частей механизма и облокачиваться на него; брать или передавать через работающий механизм предметы; чистить, смазывать, ремонтировать механизм на ходу. Недопустимо пользоваться перчатками и рукавицами при выполнении работ, если имеется опасность захвата их вращающимися частями. Если во время работы в механизм попал какой-либо предмет, доставать его, не отключив механизм, запрещается. Надо остановить механизм и медленно, вращая его вручную, освободить попавший в него предмет.

Не разрешается допускать на свое рабочее место лиц, не имеющих отношения к выполняемой работе, а также доверять работающий механизм другому рабочему.

6.2 Монтаж и демонтаж оборудования.

Станки, прессы и другое оборудование должны устанавливаться на прочных основаниях или фундаментах, тщательно выверяться и надежно закрепляться. В конструкции оборудования (станка, пресса и т. д.) и отдельных его частей необходимо предусматривать специальные рамы, болты, окна, кронштейны и другие устройства для быстрой, удобной и надежной строповки и безопасного перемещения во время погрузки, демонтажа и ремонта оборудования.

Устройства для строповки должны располагаться с учетом центра тяжести переносимого груза и при подъеме не должны повреждаться натянутыми цепями или тросами. Рым-болты, приливы, кронштейны, стенки, в, которых имеются окна под строповку, должны быть рассчитаны на прочность с учетом массы поднимаемого груза и возникающей во время транспортирования перегрузки.

При монтаже, демонтаже и ремонте оборудования; его узлов и агрегатов высотой более 1,5 м от уровня пола или рабочей площадки устраивают прочные и устойчивые подмости, леса и т. п. для безопасной работы на высоте. Рабочие места ремонтных слесарей должны быть оборудованы шкафами, верстаками, стеллажами.

Перед ремонтом оборудование отключают от электросети, а на пусковых устройствах вывешивают плакат с надписью «Не включать - работают люди».


7. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ИЗГОТОВЛЕНИЯ ДЕТАЛИ

Технико-экономическое обоснование выбора заготовки для обрабатываемой детали производят по нескольким направлениям металлоемкости, трудоемкости и себестоимости, учитывая при этом конкретные производственные условия. Технико-экономическое обоснование ведется по двум или нескольким выбранным вариантам. При экономической оценке определяют металлоемкость, себестоимость или трудоемкость каждого варианта изготовления заготовки, а затем их сопоставляют.

Технико-экономический расчет изготовления заготовки производят в следующем порядке:

1. Устанавливают метод получения заготовки согласно типу производства, конструкции детали, материалу и другим техническими требованиям на изготовление детали.

2. Назначают припуски на обрабатываемые поверхности детали согласно выбранному методу получения заготовки по нормативным таблицам или производят расчет аналитическим методом;

3. Определяют расчетные размеры на каждую поверхность заготовки;

4. Назначают предельные отклонения на размеры заготовки по нормативным таблицам в зависимости от метода получения;

Технико - экономические показатели изготовления детали.

Материал:

· Размер: М20

· Марка стали: Ст25

· Вес заготовки одной штуки = 0,313 кг

· Цена за 1 кг = 23-00 (руб.)

· Стоимость за единицу = 7-20 (руб.)

1.3аработная плата рабочего за единицу продукции составляет 5-72 (руб.).

2. Дополнительная заработная плата рабочего на единицу продукции составляет 1-43 (руб.).

3. Отчисление на социальное страхование составляет 1-99 (руб.).

4. Спецрасходы составляют 1-14 (руб.).

5. Цеховые расходы составляют 17-16 (руб.)

6. Общезаводские расходы составляют 11-44 (руб.)

7. Итоговая заводская себестоимость детали равна 46-08 (руб.)


ЗАКЛЮЧЕНИЕ

Основной целью проектирования технологического процесса является снижение себестоимости изделия и повышение производительности труда. Решение этой задачи должно производиться в соответствии с заданным типом производства. Проектирование нового технологического процесса должно включать в себя анализ исходных данных (определение служебного назначения изделия, анализ технических условий и технологичности конструкций), определение класса и группы детали, количественная оценка групп изделий, выбор исходной заготовки и метода ее изготовления, выбор технологических баз, составление технологического маршрута обработки, разработка технологических операций.

Технологический процесс для данной детали (винта) составлен наиболее рационально. Форма детали достаточно проста для обработки, для выполнения своих функций, рассматриваемая деталь получена с экономической точки зрения рационально.

Итоговая заводская себестоимость винта не велика.

Припуски определены расчетно-аналитическим методом, что дает получить экономию металла, уменьшить трудоемкость обработки и снизить себестоимость выпускаемой продукции.

Выбраны оптимальные режимы резания, что обеспечивает наибольшую производительность труда при наименьшей себестоимости операции при требуемом качестве обработки.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Курсовое проектирование по предмету “Технология машиностроения”, Добрыднев И.С., М.: Машиностроение 1985.

2. Технология конструкционных материалов, Дальский А.М., М.: Машиностроение 1985.

3. Охрана труда в машиностроении, Мазов В.А. М.: Машиностроение 1983.

Продукция проката, полученная с нагревом исходной заготовки, называется горячекатаной, без нагрева - холоднокатаной.

Технология производства основных типов проката состоит из двух этапов: прокатка слитка в полупродукт и прокатка полупродукта в готовый прокат.

1. Прокатка слитка в полупродукт

Прокатка слитка в полупродукт выполняется в горячем состоянии на специальных обжимных станах: блюмингах и слябингах (станы производства полупродукта)

Исходными заготовками при прокатке служат стальные слитки массой до 60 т, а из цветных металлов и сплавов массой до 10 т. В результате первичной прокатки слитков получаются полупродукты крупного сечения: блюмы (рис. 11Д) и слябы (рис. 12Д).

В настоящее время во всех развитых странах мира исходные заготовки квадратного и прямоугольного поперечного сечения требуемого размера получают на машинах непрерывной разливки стали. Прокатное производство блюмов и слябов осталось только в Украине и на заводах России.

2. Прокатка полупродукта в готовый прокат.

2.1. Получение листового проката (рис. 7д, а и б).

Листовой прокат делят на толстолистовой (толщиной 4–160 мм) и тонколистовой (толщиной менее 4 мм). Толстолистовой прокат получают в горячем состоянии (горячекатаные листы). Тонколистовой прокат получают из толстолистового в холодном состоянии (холоднокатаные листы).

2.2. Получение сортового проката (рис. 7д, в и рис. 8д).

На рис. 13Д показан процесс получения швеллера в результате последовательного приближения профиля исходной заготовки к форме прокатанного изделия. Прокатка ведется в горячем состоянии.

2.3. Получение труб

2.3.1. Получение бесшовных труб поперечно-винтовой прокаткой (рис. 2Д, в)

Бесшовные трубы прокатывают из отливок круглого сечения поперечно- винтовой прокаткой в горячем состоянии

Исходным материалом для производства проката служат слитки, отлитые в изложницы - для обжимо-заготовочных станов, а для станов готового проката – блюмы, слябы и заготовки, катаные и непрерывнолитые.

При использовании слитков технологическая схема прокатки предусматривает следующие операции: нагрев слитков, прокатка на блюминге или слябинге, обрезка концов раската и порезка его на мерные длины. Далее слябы и крупные блюмы направляют на станы готового проката, а часть блюмов поступает на непрерывно-заготовочные станы (НЗС), где из них получают заготовки меньших размеров для мелкосортных и проволочных станов.

При использовании непрерывнолитых заготовок (блюмов, слябов), они после нагрева или подогрева поступают непосредственно на станы готового проката, минуя обжимо-заготовочные операции.

Слитки отливают из сталей, которые подразделяют по ряду признаков: по химическому составу, по способу производства, по структуре, по назначению, по степени раскисления. Среди них наибольший удельный вес по массе занимают углеродистые стали обыкновенного качества (ГОСТ 380), стали углеродистые качественные (ГОСТ 1050) и стали низколегированные конструкционные (ГОСТ 5058).

Подготовка исходных материалов к прокатке заключается в удалении поверхностных дефектов и нагреве. Удаление поверхностных дефектов – плен, трещин, неметаллических включений и пр., весьма трудоемкая операция. В старых цехах на ней занято до 70% рабочих. Выполняют ее лезвийным инструментом, зачисткой абразивными кругами, огневой зачисткой, станочной обдиркой и пр.

Нагрев металла перед прокаткой осуществляют в нагревательных колодцах, методических печах и печах с выкатным подом. Основная цель нагрева металла – повысить его пластичность и снизить сопротивление деформации. Однако нагрев может иметь и нежелательные последствия – окалинообразование, обезуглероживание поверхностных слоев, перегрев и пережог металла. И если последних трех можно избежать, соблюдая определенные режимы, то в обычных условиях окалинообразование является неизбежным и приводит к потере 1-2 % металла и более, а также ухудшению качества поверхности.

Температура нагрева металла определяется температурным режимом прокатки – температурой начала (t н) и конца прокатки (t к). Обычно температуру t н принимают на 150-200 0 С ниже линии солидуса диаграммы состояния железоуглеродистых сплавов с таким расчетом, чтобы температура t к лежала в области однофазного гамма-железа, т.е. в области температур выше линии превращения. Обычно для мало- и среднеуглеродистых сталей t н = 1250…1280 0 С, для высокоуглеродистых t н = 1050…1150 0 С, а t к 950…1050 0 С.

В последние годы с целью экономии энергетических и материальных ресурсов, повышения качества проката переходят на низкотемпературный нагрев и прокатку.


9.1 Технология производства полупродукта.

К полупродуктам относят блюмы со стороной сечения 240…350 мм, заготовки 50…240 мм, слябы толщиной до 350 мм и шириной до 2500 мм. Полупродукты производят на блюмигах, слябингах и заготовочных станах. Наиболее распространены одноклетьевые блюминги. По диаметру валков их подразделяют на малые (Æ 850…1000 мм), средние (Æ 1050…1170 мм) и большие (Æ 1200…1500 мм).

На блюминге можно прокатывать и блюмы, и слябы, а на слябинге – только слябы.

Малые блюминги используют в основном в качестве обжимных клетей заготовочных и рельсобалочных станов.

На рис. 9.1. представлена схема блюминга 1300. Он расположен в четырех пролетах – печном (I), становом или главном (II), машинном (III), скрапном (IV) и адъюстажном (V). Слитки из стрипперного отделения сталеплавильного цеха поступают на железнодорожных платформах в печной пролет, слитки кипящей стали в раздетом состоянии, а спокойной – в изложницах в подорванном от литников состоянии и без прибыльных надставок.

Мостовым клещевым краном слитки сажают в нагревательные колодцы (1) - регенеративного или рекуперативного типов. В силу ряда недостатков, присущих регенеративным колодцам (прямой контакт факела со слитком, неравномерный нагрев, отсутствие представительной точки для контроля температуры в ячейке и пр.), чаще используют колодцы рекуперативного типа.

До 90% слитков сажают в колодцы в горячем состоянии, что примерно вдвое сокращает время нагрева слитков и соответственно расход топлива и потери металла в окалину.

В зависимости от температуры различают слитки горячего посада, теплого посада и холодного посада с температурой соответственно выше 800 0 С, от 400 до 800 0 С и ниже 400 0 С.

Из колодцев нагретые слитки клещевым краном укладывают на слитковоз – челночного или кольцевого типа (3). Челночные имеют ограниченную пропускную способность и являются узким местом в технологической цепочке, особенно при подаче слитков от дальнейших ячеек. Поэтому более предпочтительны кольцевые слитковозы. На кольце располагают до 3…4 тележек, перемещающихся со скоростью до 6 м/сек.

Боковым сталкивателем (2) со слитковоза слитки сталкивают на поворотный стол, далее на приемный рольганг и по нему передают в становый пролет к блюмингу (5), где их прокатывают на блюмы или слябы.

Главной особенностью блюминга является возможность подъема верхнего валка между проходами на высоту до 1500 мм и реверса валков, что обеспечивает прокатку слитков в прямом и обратном направлениях до получения раскатов заданных размеров. Для калибровки валков блюминга используют систему ящичных калибров с последовательным или симметричным расположением калибров (рис. 9.2 -а, б).

Сила прокатки на блюминге достигает 18 МН, момент прокатки – до 5 МНм. Привод валков осуществляется от одного двигателя через шестеренную клеть или индивидуально на каждый валок. Суммарная мощность двигателей до 12 тыс. квт.

Передача раската из калибра в калибр вдоль оси валков осуществляется манипуляторами. В линейке переднего манипулятора со стороны привода вмонтирован крюковой кантователь. За блюмингом расположены машина огневой зачистки (7) и далее – ножницы (8). На машине огневой зачистки (МОЗ) удаляют поверхностные дефекты. В зависимости от площади и глубины зачистки потери металла составляют до 3 %.

На ножницах удаляют передний и задний концы раската и режут его на мерные длины. Здесь же на передний торец каждого блюма и сляба клеймом наносят паспортные данные слитка. Головную и донную обрезь из под ножниц наклонным транспортером (9) передают в скрапной пролет на железнодорожные платформы.

Ножницы кривошипно-шатунные, обеспечивают усилие резания до 16 МН и число резов до 12 в мин.

От ножниц часть блюмов по рольгангу (10) направляют на непрерывно-заготовочный стан (НЗС), а другая часть и слябы по транспортеру (11) – на адъюстаж для охлаждения и ремонта.

Производительность блюминга 1150 составляет 3…4 млн. т/год, а блюминга 1300 - до 6 млн. т/год (по всаду).

Слябинги по составу и расположению оборудования во многом аналогичны блюмингам. Главным отличием слябинга является наличие кроме горизонтальных валков пары вертикальных, расположенных перед или за клетью. Кроме того валки слябинга не калиброванные, а гладкие.

Прокатывать на блюминге заготовки небольшого сечения экономически нецелесообразно. Поэтому обычно за блюмингом располагают НЗС, на котором из блюмов без подогрева прокатывают заготовки. На рис. 9.3 представлена схема НЗС 900/700/500. Стан состоит из трех групп и обеспечивает получение квадратных заготовок со стороной сечения 240, 190 и 150 мм из второй группы и 120, 100 и 80 мм – из третьей.

По подводящему рольгангу (1) блюмы поступают на поворотное устройство для направления раската здоровым концом вперед, а от него – в первую группу из двух клетей (3) с валками диаметром 900 мм. Вторая группа из шести клетей – две с валками диаметром 900 мм (5) и четыре – по 700 мм (6,7). Во избежание кантовки раската между клетями валки двух клетей 700 расположены вертикально (6). Перед группой установлен кантователь (4).

Из второй группы раскаты сечением 150 мм и выше шлепперами передают на обводной рольганг (8) и далее на ножницы с нижним резом усилием 10 МН.

Для получения заготовок меньшего сечения раскаты поступают в третью группу из шести клетей с диаметром валков 500 мм, три из которых с вертикальными (11) и три – с горизонтальными валками (12). Перед группой установлены маятниковые ножницы (9) для удаления переднего конца и кантователь (10).

В первых клетях обычно используют систему ящичных калибров, в последующих ромб – квадрат.

За третьей группой установлены летучие ножницы (13) усилием 1,5 МН. После порезки заготовки поступают на пакетирующий рольганг (19) и далее на холодильник (21).

Производительность НЗС обычно соответствует производительности блюминга, за которым он установлен.

Кроме НЗС для производства заготовок используют также обжимно-заготовочные станы линейного типа и с последовательным расположением клетей.

9.2 Технология производства проката на рельсобалочных станах

Сортамент рельсобалочных станов включает железнодорожные рельсы массой от 38 до 75 кг/п.м., трамвайные и подкрановые рельсы, двутавровые балки и швеллеры свыше №24, равнобокие и неравнобокие уголки, зетообразные, круглые и квадратные профили крупных размеров и пр.

В качестве примера рассмотрим технологию производства наиболее ответственного и сложного профиля – железнодорожных рельсов на стане 800.

Стан линейного типа, клети расположены в две линии (рис.7.12). В первой – обжимная дуо-реверсивная клеть 900 (малый блюминг), во второй три клети 800 – черновая и предчистовая трио и чистовая дуо с отдельным приводом. Заготовки сечением 300´340 мм нагревают в методических печах до температуры 1180-1200 0 С. В обжимной клети прокатку осуществляют в ящичных и трех-четырех тавровых калибрах, а в остальных – в пластовых калибрах (рис. 9.4).

Из чистовой клети выходит рельс длиной около 75 м с температурой на уровне 900 0 .

Дисковыми пилами раскат режут на стандартную длину 12,5 или 25 м с учетом термической усадки и припуска на механическую обработку торцов.

Для компенсации термического изгиба при охлаждении рельса на головку, его предварительно изгибают на подошву и в таком виде охлаждают на холодильнике до температуры примерно 600 0 С. Затем следует замедленное охлаждение (противофлокенная обработка) в ямах, до температуры 150…200 0 С в течении 7…8 час.

Охлажденные рельсы правят в роликоправильных машинах (РПМ) и дополнительно концы рельсов на штемпельных прессах. После этого фрезеруют торцы рельсов на стандартный размер и сверлят болтовые отверстия. Наличие дефектов в рельсах контролируют УЗК.

Далее следует термическая обработка рельсов – нормализация в проходных печах или закалка головки рельсов (нагрев ТВЧ до 1000 0 С и охлаждение водовоздушной смесью). Окончательную правку рельсов осуществляют на РПМ в положении стоя и под прессом концов рельсов в положении на боку.

Приемку рельсов проводят ОТК и инспекторы МПС. Контролируют химический состав и структуру рельсовой стали, ее прочностные и пластические свойства, ударную вязкость, излом образцов, полнопрофильных рельсов под копром и пр.

Прокатку балок, швеллеров и др. профилей осуществляют по такой же технологической схеме с некоторыми упрощениями: более широкий температурный интервал нагрева заготовки (1200…1280 0 С), отсутствует предварительный изгиб раската перед холодильником и замедленное охлаждение, меньше объем отделки и контроля качества профилей.

9.3 Прокатка крупно-, средне-, мелкосортного проката и катанки.

Крупный сорт прокатывают на современных станах с последовательным расположением клетей (рис.7.15), реже на станах линейного типа, аналогичных рельсобалочным.

Исходным материалом служат блюмы и заготовки, катанные и непрерывнолитые, квадратного сечения со стороной до 310 мм. Нагретые в методических печах с торцевой задачей и выдачей заготовки по рольгангу поступают в непрерывную группу (одну или две) из нескольких чередующихся клетей с горизонтальным и вертикальным расположением валков. Затем шлепперами раскаты передают на вторую линию, где прокатку осуществляют в обратном направлении в группе из нескольких последовательно расположенных клетей. Расстояние между соседними клетями превышает длину раскатов, и это избавляет от необходимости соблюдать условие постоянства секундных объемов металла. Поэтому на таких станах можно прокатывать профили сложной формы.

После второй линии раскаты шлепперами передают в третью линию, откуда из чистовой клети - к пилам горячей резки и далее на холодильник. Готовый прокат режут на пилах холодной резки на мерные длины, правят в РПМ, удаляют поверхностные дефекты и упаковывают для отправки на склад готовой продукции.

Все клети стана имеют индивидуальный привод. Каждая группа и отдельно стоящие клети оснащены кантователями.

Производительность подобных станов доходит до 2 млн. т/год.

Средний и мелкий сорт прокатывают на станах непрерывного и полунепрерывного типов с последовательным расположением клетей. Технологическая схема аналогична схеме прокатки крупного сорта.

Катанку производят на современных проволочных непрерывных станах. Нагретые заготовки перед станом сваривают торцами в бесконечную плеть. В непрерывной черновой группе (одной или двух) прокатку ведут в четыре нитки. Затем поток раздваивается на две промежуточные непрерывные группы клетей (по две нитки на каждую), а после них снова раздваивается на четыре нитки, которые прокатывают в блоках чистовых клетей – двух- или трехвалковых.

Для обеспечения равномерного охлаждения катанки ее на выходе из чистовых блоков интенсивно охлаждают и витками укладывают на движущийся транспортер с регулируемым охлаждением, после которого укладывают в бунты массой до 2 т. Затем бунты уплотняют, обвязывают и отправляют на склад готовой продукции.

Клети черновых групп могут иметь общий или индивидуальный привод, как и блоки чистовых клетей. Скорость прокатки на таких станах достигает 120 м/сек, производительность – до 1 млн. т/год.

В черновых группах установлены аварийные летучие ножницы, а после чистовых блоков – для порезки на заданную массу бунта.

9.4 Технология производства листов

9.4.1 Производство горячекатаных листов и полос. Толстые листы прокатывают на специализированных толстолистовых станах (ТЛС) и широкополосных станах горячей прокатки (ШСГП). На ТЛС полистно катают листы толщиной от 5 до 160 мм и более, на ШСГП – полосы толщиной до 20 мм с последующей порезкой на листы.

Используют преимущественно ТЛС двух- и трехклетевые с последовательным расположением клетей, например, стан 3600 МК «Азовсталь». В качестве заготовки применяют непрерывнолитые и катаные слябы толщиной до 350 мм массой до 16т, а для особо толстых листов и плит – слитки массой до 30 т и более. Слябы нагревают в методических печах, а слитки – в нагревательных колодцах или печах с выдвижным подом.

Первую клеть с вертикальным или горизонтальным расположением валков используют в качестве окалиноломателя. Вторая клеть – черновая дуо или кварто, чаще универсального типа, в которой производят разбивку ширины и обжатие сляба по толщине.

После второй клети особо толстые листы и плиты передаточной тележкой направляют в отделение термической обработки и отделки. Для получения листов меньшей толщины раскаты докатывают в чистовой клети кварто, на которую приходится примерно 25% обжатия от общего.

Удаление окалины с поверхности листов на всех клетях осуществляют с помощью гидросбивов с давлением воды до 17 МПа. С передней и задней стороны клети оборудованы манипуляторами, а для разворота слябов - рольгангами с коническими роликами.

Из чистовой клети раскаты поступают в роликозакалочную машину и далее на охлаждение и отделку. Их режут на листы заданных размеров, которые правят в РПМ, подвергают ультразвуковому, визуальному и другим видам контроля. Для повышения служебных свойств листы подвергают термической обработке (нормализации, закалке и пр.).

Производительность ТЛС составляет более 1 млн. т/год.

Горячекатаные полосы, в том числе толстые, прокатывают на непрерывных или полунепрерывных ШСГП. На них производят до 90% листовой стали, благодаря их более высокой производительности и высоких технико-экономических показателей по сравнению с ТЛС.

На ШСГП в качестве заготовок используют слябы, которые нагревают в методических печах (1, рис.9.5). Нагретые слябы по рольгангу (2) поступают в черновой окалиноломатель (3) с горизонтальным или вертикальным расположением валков и далее в уширительную клеть (4), после которой иногда устанавливают пресс (5) для обжатия сляба по ширине.

После этого слябы поступают в черновую группу последовательно расположенных клетей (6, 7, 8), как правило, кварто универсального типа, и далее – в чистовую непрерывную группу клетей – кварто (11…16). Перед ней установлены летучие ножницы для обрезки переднего конца (9) и чистовой окалиноломатель (10). Удаление окалины с поверхности раскатов осуществляют с помощью гидросбивов.

После чистовой группы клетей полосы интенсивно охлаждают в душирующих устройствах и сматывают на моталках в рулон.

Порезку полосы на листы заданных размеров осуществляют на агрегатах продольной и поперечной резки. Часть полос в рулонах поступает в цехи холодной прокатки (ЦХП).

Полунепрерывные ШСГП представляют собой комбинацию из ТЛС в качестве черновой группы и непрерывной чистовой группы клетей. Из черновой группы выдают толстые листы, а из чистовой – толстые и тонкие полосы, смотанные в рулон.

9.4.2 Производство холоднокатаной листовой стали. На ШСГП производят полосы толщиной 0,8 мм и более. Между тем для многих изделий требуется листы меньших толщин. Кроме того, горячекатаные листы имеют поверхность, непригодную для изготовления лицевых деталей изделий. Поэтому рулоны горячекатаных полос направляют в ЦХП для дальнейшей прокатки.

Технологией предусмотрены следующие операции: травление, прокатка, очистка поверхности, отжиг, дрессировка, отделка.

Травление полос осуществляют с целью удаления с их поверхности прокатной окалины. Для этого используют непрерывные травильные агрегаты (НТА) с серной или соляной кислотами (рис. 9.6) Полосу из разматывателя (1) с помощью тянущих роликов (2) задают в РПМ (3). На гильотинных ножницах (4) обрезают задний конец предыдущей полосы и передний конец следующей и сваривают их в непрерывную ленту на стыкосварочной машине (5). Место стыка зачищают на гратоснимателе (6). Эти операции выполняют на неподвижной ленте. Чтобы обеспечить непрерывность процесса травления, предусмотрен петленакопитель (8), из которого полоса непрерывно поступает в травильные ванны (10).

В промывочной ванне (11) с поверхности полос смывают остатки кислотных растворов и сушат в камере (13). На дисковых ножницах (14) обрезают боковые кромки полос, далее на ножницах поперечной резки (15) удаляют места их стыковой сварки и вновь сматывают в рулоны на моталке (16).

Холодную прокатку полос осуществляют на одноклетьевых (четырех- или многовалковых) станах в режиме реверсивной прокатки за несколько проходов или на многоклетьевых станах с рулона в рулон. В процессе прокатки на валки интенсивно подают смазочно-охлаждающую жидкость (СОЖ) – смесь эмульсола с водой.

На многоклетьевых станах прокатывают жесть и тонкие полосы толщиной от 0,14 мм, а на одноклетьевых многовалковых станах – тончайшую ленту толщиной до 0,002 мм.

Для снятия наклепа металл подвергают отжигу в колпаковых печах (рулонами) или в агрегатах напрерывного отжига (полосой) при температуре около 900 0 С. Предварительно в агрегатах электролитической очистки с поверхности полос удаляют остатки эмульсии и различные загрязнения.

Для повышения штампуемости листы подвергают дрессировке путем прокатки с небольшим обжатием - 1…2%.

В процессе отделки полосы режут на листы заданных размеров на агрегатах продольной и поперечной резки, правят, наносят защитные и/или декоративные покрытия и пр.

Кроме порулонного способа в последние годы в ЦХП начали внедрять принципы бесконечной прокатки и отделки в непрерывных агрегатах травления, прокатки, очистки поверхности, отжига и дрессировки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Организации и стратегии развития промышленных предприятий

КОНТРОЛЬНАЯ РАБОТА

по учебной дисциплине

«ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ ПРОИЗВОДСТВА»

Тема 5. Технология производства стального проката

Самара 2014

Введение

1. Исходный материал для прокатного производства

2. Подготовка металла к прокатке

2.1 Зачистка слитков

2.2 Зачистка полуфабрикатов

2.3 Нагрев металла перед прокаткой

3. Прокатка стали

4. Принципиальная схема производства

Заключение

Список использованной литературы

Введение

Решение экономических, социальных и других задач предприятия непосредственно связано с быстрым техническим прогрессом производства и использования его достижений во всех областях хозяйственной деятельности. На предприятии он осуществляется тем эффективней, чем совершеннее на нем техническая подготовка производства, под которой понимается комплекс конструкторских, технологических и организационных мероприятий, обеспечивающих разработку и освоение производства новых видов продукции, а также совершенствование выпускаемых изделий. Запуск в производство изделий, прошедших полную техническую подготовку, позволяет добиться высокой рентабельности их выпуска уже через 1-2 года.

Прокатное производство металлоизделий, являющееся завершающим этапом металлургического цикла, в последние годы очень широко применяется на машиностроительных и приборостроительных предприятиях, поскольку является прогрессивным способом металлообработки, позволяющим обеспечить высокое качество продукции, огромную производительность и экономическую эффективность. В некоторых случаях прокатка стали является единственным способом производства изделий, в частности, листов, труб, высокопрочных сортовых профилей. По качеству выпускаемых изделий и производительности прокатка не имеет себе равных среди других способов металлообработки.

Важнейшим преимуществом прокатки является то, что наряду с формоизменением заготовки сплаву придают уникальные прочностные свойства.

Поэтому не менее 80% выплавляемых металлов и сплавов прокатывается, что позволяет многие предприятия обеспечить высококачественными заготовками и готовыми профилями (рельсы, балки, профили для рессор и пружин, колес, напильников, зубил, деталей автомобилей, тракторов, сельскохозяйственных машин и т.п.).

Целью данной работы является исследование технологии производства стального проката и составление схемы производства с указанием основных его этапов.

металл слиток блюм прокатка сталь

1 . Исходный материал для прокатного производства

Исходным материалом для прокатного производства являются слитки и полуфабрикаты (блюмы, слябы, заготовки и сутунки) различных форм, размеров и марок сталей.

К основным параметрам слитков, влияющим на качество, относятся их развес, форма и соотношение геометрических размеров. Параметры зависят от химического состава и назначения металла.

Развес слитков для прокатного производства может колебаться в широких пределах от 100 кг до 50 т и выше. Следует отметить, что если раньше слитки среднелегированных и высоколегированных марок сталей отливали преимущественно небольших развесов, то в последнее время технология прокатного производства настолько прогрессировала, что появилась возможность получать готовую продукцию средне- и высоколегированной стали из слитков большого развеса.

Форма слитков бывает самая разнообразная: квадратная, прямоугольная, круглая, многогранная, волнистая и др., но наиболее распространенными формами являются квадратная, прямоугольная и круглого сечения. При этом в одинаковой степени применяются как слитки, уширенные кверху, так и уширенные книзу.

Современное состояние технологии выплавки и разливки стали в изложницы не гарантируют получения слитков с одинаковым химическим составом по сечению и высоте, при этом, чем больше развес слитков, тем более резко проявляется их химическая неоднородность.

В процессе охлаждения металла в изложнице и кристаллизации слитка образуются внутренние дефекты (усадочные раковины, сегрегация химических элементов, газонасыщенность и др.), которые последующим технологическим переделом устраняются или уменьшаются. Кроме того, встречаются внутренние дефекты, не связанные со спецификой технологии выплавки и разливки, а являющиеся результатом нарушения установленной технологии выплавки, разливки и охлаждения слитков (плохое раскисление металла, низкая или высокая температура и скорость разливки и др.). К числу таких дефектов относятся: неметаллические включения, пузыри, усадочная рыхлость, осевая и центральная повышенная ликвация, пятнистая ликвация, древовидный излом, внутренние трещины в слитках и др.

Кроме вышеуказанных дефектов, нарушение технологии производства или неправильно выбранный режим той или иной операции сталеплавильного производства может привести к образованию также поверхностных дефектов. К наиболее часто встречающимся поверхностным дефектам относятся рванины, поперечные и продольные трещины, плены, осповины, шлаковые включения и др., которые подлежат удалению с поверхности слитков.

Качество стального слитка определяется степенью развития дефектов и возможностями их устранения без снижения технико-экономических показателей производства при условии получения готовой продукции в строгом соответствии с ГОСТом.

Влияние внутренних дефектов слитков может быть несколько снижено или локализовано за счет дальнейшей правильной технологии передела, а поверхностные дефекты должны быть удалены непосредственно со слитка или же в случае горячего посада с полуфабриката.

Наиболее часто встречающиеся пороки прокатного происхождения следующие: перегрев, пережог, закат, царапины, флокены, по геометрическим размерам, обезличенные и др.

Перед посадкой в нагревательные колодцы и печи слитки подвергаются контролю по состоянию поверхности и по правильности маркировки.

Контроль состояния поверхности слитков производится путем внешнего осмотра либо непосредственно перед посадкой в нагревательные колодцы при горячем всаде, либо в случае применения слитков холодного всада, на адъюстаже сталеплавильного цеха. Слитки не должны иметь поверхностных дефектов, размеры которых превышают нормы, установленные техническими условиями. В зависимости от марки стали, назначения, глубины залегания, и протяженности дефектов могут быть применены те или иные способы зачистки поверхности.

Для предупреждения возможности перепутывания, обезличивания слитков чрезвычайно важна правильная организация учета и маркировки слитков.

Слитки, предназначенные для холодного посада, специально маркируются при помощи металлических скоб с нанесением на них номера плавки и марки стали. Скобы устанавливаются в надставку слитка до разливки металла.

Если слитки плавок, предназначенных для горячего посада, направляются на склад, на одной из боковых граней каждого слитка наносится краской номер плавки и марки стали.

Общее количество поступивших слитков данной плавки, а также количество годных и забракованных контролируются сопоставлением с данными паспорта плавки.

Блюмы, слябы и заготовки после охлаждения подвергаются, прежде всего, контролю состояния поверхности (внешним осмотром после удаления окалины с поверхности металла).

Удаление окалины в зависимости от специфики производства, марки стали, назначения металла может быть произведено травлением в кислотах, дробеструйными установками или другими способами.

На поверхности полуфабриката не должно быть дефектов в виде трещин, плен, рванин, закатов, рисок и др. Обнаруженные дефекты обводят мелом и удаляют. Удаление поверхностных дефектов в зависимости от марки стали, назначения заготовок, размеров пороков и особенности производства может быть произведено огневой зачисткой, пневматической вырубкой, строжкой и другими методами.

2. Подготовка металла к прокатке

Технологический процесс прокатного производства в различных стадиях обработки металла (нагрев, прокатка, охлаждение и др.) связан с неравномерностью изменения отдельных частей объема металла, что вызывает в последнем различные по знаку и величине напряжения.

Неоднородность структуры металла, расположение и свойства различных кристаллов, наличие внутренних и внешних пороков в металле усугубляет неравномерность распределения напряжений в процессе обработки металла давлением.

Все пороки металла, будучи местами повышенной, концентрации напряжений и подвергаясь растягивающим напряжениям в процессе прокатки, могут привести к образованию местных хрупких разрушений до того, как среднее напряжение дойдет до предела текучести.

Не удаленные с поверхности слитков и заготовок пороки передаются готовому сорту. При этом чем меньше размер готового профиля, тем большую поверхность этот порок поражает и тем большая требуется затрата энергии для удаления порока. Часто пороки, которые легко можно было бы удалить со слитка или полуфабриката, переходя в готовый сорт, превращают его в окончательный брак.

Различными опытами и исследованиями установлено, что повышение концентрации напряжения тем больше, чем глубже порок расположен в металле, и чем меньше угол между сторонами порока.

Максимальное напряжение на поверхности металла, пораженного дефектами, может быть определено по формуле С. И. Губкина:

у макс - напряжение у конца трещины;

у ср - среднее сопротивление деформации;

р - радиус закругления у вершины надреза;

С - глубина трещины.

Влияние поверхностных дефектов, на понижение прочности материала показано опытами, проведенными акад. А. Ф. Иоффе, над кристаллами каменной соли.

Кристаллы каменной соли подвергались разрыву в сухом виде и в воде. Было установлено, что предел прочности сухих образцов равняется 0,5 кг/мм2, а предел прочности подобных образцов при разрывах их в воде равнялся 200 кг/мм2.

Такое резкое повышение предела прочности кристаллов соли объясняется главным образом тем, что в воде растворился поверхностный слой соли, на котором имелись микротрещины, являющиеся источниками повышенной концентрации напряжений.

Удаление поверхностных пороков с металла является ответственной и трудоемкой операцией прокатного производства от тщательности, выполнения которой зависит качество готовой продукции и технико-экономические показатели производства.

2.1 Зачистка слитков

При посадке слитков в нагревательные колодцы в холодном состоянии зачистка пороков поверхности слитков производится в холодном состоянии, перед их нагревом.

Может также производиться огневая зачистка пороков поверхности слитков, как горячего, так и холодного всада.

Иногда для слитков, главным образом горячего всада, зачистка пороков поверхности слитков не производится.

Ни одна из схем зачистки пороков поверхности слитков не гарантирует полностью от необходимости последующей зачистки полуфабриката. Конечно, после предварительной зачистки слитков поверхностных пороков на полуфабрикате будет значительно меньше.

Наиболее эффективным способом, который получает большое распространение, является огневая зачистка горячего раската.

Преимущества этого способа перед остальными особенно ощутимы при применении специальных машин непрерывной, сплошной огневой зачистки поверхности горячего раската, установленных в общую линию прокатного стана по пути движения раската.

Слитки ряда ответственных легированных сталей перед удалением пороков с их поверхности подвергаются различным видам термической обработки.

К основным видам термической обработки слитков перед зачисткой относятся: отжиг, нормализация с отпуском, гомогенизация.

Отжиг и нормализация с отпуском необходимы, чтобы снять внутренние напряжения, образовавшиеся в слитках в процессе охлаждения, которые могут при определенных условиях нагрева и прокатки привести к образованию пороков в слитках, смягчить сталь для облегчения зачистки поверхностных дефектов и уменьшить флокеночувствительность металла.

Гомогенизация (диффузионный отжиг), кроме того, несколько выравнивает химический состав металла.

2.2 Зачистка полуфабрикатов

С целью обнаружения поверхностных пороков на полуфабрикате его подвергают предварительной очистке от окалины.

Окалина, покрывающая поверхность углеродистого металла, состоит в основном из трех слоев: верхнего - окисла Fe2О3, среднего - окисла Fе3О4, и нижнего - закиси FeO. В окалине, покрывающей поверхность легированных и высоколегированных сталей, кроме того, содержатся еще в небольших количествах окислы легирующих элементов (от 2 % до 3%). В состав основных слоев окалины входит примерно от 20 % до 50% окислов Fe2О3 и Fе3O4 и от 50 % до 80% закиси FeO.

В зависимости от химического состава стали применяют различные кислоты. Для травления полуфабрикатов из низколегированной и углеродистой стали применяют, в основном, раствор серной кислоты.

Для травления полуфабрикатов, чистого сорта, а также горячекатаных полос и листов из нержавеющих сталей применяют водные растворы соляной, серной, азотной или фтористоводородной кислот разных концентраций и в различных комбинациях.

Контроль водного раствора кислоты производится следующим образом. Свежий раствор перемешивают. Из глубины ванны свинцовым или кислотоупорным стаканом отбирают пробу. В стакан опускают термометр и ареометр и определяют плотность при соответствующей температуре, исходя из чего определяют удельный вес раствора. Из стаканчика с раствором пипеткой отбирают в колбу 10 см3 раствора и добавляют 3-4 капли метилоранжа. Титруют, добавляя в раствор по каплям из бюретки щелочной раствор едкого натра, до изменения красного цвета раствора в зеленый. По делениям бюретки определяют количество израсходованной щелочи, а по количеству израсходованной щелочи и удельному весу раствора устанавливают содержание в растворе кислоты и купороса.

Качество травления проверяется внешним осмотром поверхности заготовок. Хорошо протравленный металл должен иметь гладкую поверхность ровного светло-серого цвета, без остатков не вытравленной окалины, следов перетрава и других дефектов.

За последние годы получил распространение непрерывный способ удаления окалины с поверхности полуфабриката, сортового проката листов и полос с помощью дробеструйных установок различных конструкций.

Этот способ имеет ряд преимуществ по сравнению с травлением металла в кислотах, основные из которых отсутствие пороков травления и потерь здорового металла. При производстве полуфабриката и сортового проката из легированной и высокоуглеродистой стали применяется также абразивный способ удаления окалины, представляющий собой разновидность фрезерования металла зернами абразивного круга.

Сущность этого метода заключается в сошлифовке на поверхности металла змейки или колец с шагом 100 мм - 200 мм.

Однако этот способ имеет ряд весьма существенных недостатков, из которых основными являются низкая производительность, значительные потери здорового металла и небольшая величина поверхности металла, очищаемой от окалины.

Очистка грубой окалины с поверхности полуфабриката и крупного сортового проката углеродистых и низколегированных сталей может производиться отбивкой посредством пневматических молотков, с последующей зачисткой металлическими щетками. Этот способ не обеспечивает достаточно полного удаления окалины, особенно нижнего слоя, и не дает возможности качественно выявить поверхностные дефекты металла. Им можно пользоваться лишь в том случае, если поверхность металла достаточно чиста или же по условиям поставки допускаются незначительные пороки на поверхности.

В последнее время для удаления с поверхности металла окалины также начал применяться газопламенный способ, основанный на нагреве поверхности металла специальными многопламенными горелками, которые перемещаются вдоль обрабатываемого металла на тележках.

Для удаления пороков с поверхности полуфабриката можно использовать такие способы, как огневая зачистка, электродно-дуговая зачистка, обдирка на токарно-обдирочных станках, строжка на строгальных станках, фрезерование на специальных станках, пневматическая вырубка молотками и абразивная зачистка наждачными кругами.

При производстве высоколегированных сталей (нержавеющих, жаропрочных и др.) слитки, заготовки и слябы могут подвергаться сплошной обдирке поверхностного слоя на специальных токарных и строгальных станках большой мощности. Основное преимущество этого способа зачистки заключается в том, что при этом удаляются все поверхностные дефекты и обеспечивается получение значительно более чистой поверхности полуфабриката по сравнению с другими видами зачистки металла, так как обдирка слитков производится до полного удаления поверхностных пороков.

Основные недостатки обдирки - низкая производительность, большие потери здорового металла (до 10%) и необходимость предварительной термической обработки некоторых сталей перед зачисткой.

2.3 Нагрев металла перед прокаткой

В технологическом процессе прокатного производства исключительно большую роль играет нагрев металла, особенно высоколегированных, легированных и высокоуглеродистых сталей перед прокаткой. Нагрев металла в пламенных печах и колодцах прокатных цехов занимает свыше 90% времени всего цикла производства проката.

От нагрева металла в большой степени зависит качество готовой продукции, производительность прокатных станов, расход энергии и другие показатели работы прокатных цехов. Правильно выбранная технология нагрева металла в сочетании с правильным режимом его пластической деформации и охлаждения может в значительной степени локализовать отдельные дефекты литой стали, улучшить все характеристики готового сорта, и, наоборот, неудачно выбранная технология нагрева может привести к образованию новых пороков и получению окончательного брака.

Нагрев металла перед прокаткой должен обеспечить повышение его пластичности, снижение сопротивления деформации при прокатке и улучшение физико-механических и физико-химических свойств стали.

Правильное определение температуры нагрева является чрезвычайно ответственной задачей. Практически температуру нагрева металла устанавливают, исходя из специфических особенностей работы того или иного завода. При этом принято ориентировочно считать, что температура нагрева металла должна быть на 150° - 250° ниже температуры плавления и на 100° - 120° ниже температуры пережога.

Для сталей большинства марок диапазон температур нагрева колеблется в пределах 1050°- 1300°.

При установлении температурного режима нагрева металла необходимо учитывать также температурный интервал прокатки, который оказывает большое влияние на производительность прокатного стана, качество готовой продукции и выход годного.

При определении температурного интервала прокатки учитывается пластичность, и сопротивление стали деформации при различных температурах, а также требования к структуре металла. Для стали каждой марки характерен свой температурный интервал прокатки, обеспечивающий получение наилучших физико-механических свойств и структуры при оптимальных технико-экономических показателях работы стана.

Правильность установления температуры нагрева для стали данной марки может быть проверена экспериментально тремя способами. Первый способ обоснован на скручивании круглых образцов металла при различных температурах. Температура, при которой образец выдержит без разрушения наибольшее число скручиваний вокруг своей продольной оси, является оптимальной. Второй способ заключается в горячей осадке под молотом специально отлитых при разливке плавки проб в виде маленьких слиточков, размерами несколько больше маркировочных проб. Эти слиточки нагреваются до различных температур и ссаживаются под молотом в одинаковых условиях. Оптимальной является температура, при которой поверхность осаженных слиточков наиболее чистая.

Третий способ проверки правильности температуры - прокатка образцов на клин. Для этой цели отливаются несколько слитков квадратного сечения, от которых отрезают образцы длиной 200 мм - 250 мм, которые нагревают до различных температур прокатки и прокатывают на клин в валках с переменным сечением или на обычных валках клиновых образцов. Осмотр образцов показывает, при какой температуре и обжатии получается наиболее чистая поверхность, что характеризует оптимальный режим.

При нагреве металла контролируются следующие показатели:

а) температура в каждой зоне нагревательного устройства в продолжение всего периода нагрева;

б) скорость нагрева в каждой зоне печи;

в) общая продолжительность нагрева;

г) газовая атмосфера печи (контролируется на содержание Н2; СО, СО2 и СH4 в продуктах горения с тем, чтобы предупредить интенсивное окисление и обезуглероживание металла);

д) расход газа и воздуха;

е) давление в печи (колодцах), нормальный уровень которого должен быть 5-6 атм;

ж) температура в борове печи (колодцах);

з) своевременность кантовки (в процессе нагрева металла, особенно легированных сталей, для равномерного прогрева слитков и заготовок систематически, через определенные промежутки времени, производится их кантовка).

При нагреве в одной ячейке или печи слитков или заготовок разного развеса, но стали одной марки, нагрев ведется по металлу меньшего развеса. При нагреве в одной ячейке слитков разных марок режим нагрева устанавливается по стали, требующей более медленного подъема температур и более низкой температуры выдачи.

На современных нагревательных устройствах регулировка режима нагрева и контроль могут осуществляться при помощи счетно-решающих машин и телевизионных установок.

При выдаче металла контролируется, прежде всего, температура нагрева, которая проверяется оптическим пирометром, фотоэлементом или другими приборами при выдаче металла из печи и в начале прокатки. Одновременно проверяется равномерность прогрева слитка по всей высоте (визуально и по поведению его в процессе прокатки) - неравномерно нагретые слиток или заготовка будут изгибаться при прокатке из-за неравномерной вытяжки. Проверяется также состояние поверхности металла (визуально) и поплавочная выдача металла из нагревательных устройств.

3 . Прокатка металла

Прокаткой называют процесс пластического формоизменения материала, последовательно увлекаемого в очаг деформации силами трения, действующими на контактной поверхности «деформируемая заготовка - движущийся инструмент».

При прокатке одновременно подвергается пластической деформации не весь объем материала, а лишь его часть, находящаяся в очаге деформации. Это позволяет обрабатывать большие массы материала при оптимальных энергозатратах и размерах оборудования, производить обработку с огромными скоростями, обеспечивать высокую точность получаемых изделий при минимальном износе инструмента.

Прокатка является одним из наиболее прогрессивных способов получения готовых металлоизделий и занимает ведущее положение среди существующих способов обработки металлов давлением.

Различают три основных способа прокатки, отличающиеся направлением обработки или характером выполнения деформации: продольная, поперечная и поперечно-продольная (винтовая). Каждый из этих способов можно производить при нагреве обрабатываемых заготовок (горячая) и без нагрева (холодная прокатка).

Продольная прокатка основана на деформации металла валками, расположенными параллельно в одной плоскости и вращающимися в разные стороны; ось прокатки металла перпендикулярна большим осям валков (рис. 3.1а).

Поперечная прокатка - это деформация металла двумя валками, вращающимися в одну сторону; ось прокатки параллельна большим осям валков (рис. 3.1б).

Рис. 3.1 а) схема продольной прокатки; б) схема поперечной прокатки.

Косая прокатка представляет собой деформацию металла двумя валками, расположенными под определенным углом друг к другу и вращающимися в одну сторону. При этом металл задается в валки вдоль их больших осей (рис. 3.2). Такое расположение валков придает металлу вращательное и поступательное движение.

Рис. 3.2 Схема косой прокатки

Последние два способа прокатки предназначены для изготовления изделий в виде тел вращения (трубы, шары и т. д.).

Технологический процесс прокатки предварительно зачищенной и нагретой стали включает в себя следующие операции:

1) резка проката на мерные длины;

2) охлаждение;

3) термообработка;

4) правка;

5) отделка;

6) контроль качества.

К технологическим параметрам прокатки относят: температуру деформируемой заготовки, частное (за один проход между валками) и общее обжатие заготовки, скорость прокатки (скорость выхода заготовки из валков может достигать до 100 м/с), диаметр валков и коэффициент контактного трения между инструментом и деформируемой заготовкой. Для характеристики деформации при прокатке используют абсолютные и относительные показатели:

Абсолютное обжатие;

Относительное обжатие;

Коэффициент вытяжки, где:

h0 - высота заготовки до деформации;

h1 - высота заготовки после деформации;

L0 - длина заготовки до деформации;

L1 - длина заготовки после деформации.

Абсолютное и относительное обжатие заготовки за один проход ограничено условием захвата металла прокатными валками, а также их прочностью. Поэтому в зависимости от условий прокатки относительное обжатие за проход обычно не превышает 0,35 - 0,45. Кроме того, определенные ограничения накладывают физико-механические свойства деформируемого материала, особенно при холодной прокатке.

Основным деформирующим инструментом для прокатки металлоизделий обычно являются прокатные валки, в редких случаях используется и плоский клиновой инструмент. При изготовлении труб используют оправки (короткие, длинные, плавающие), назначение которых - оформлять внутреннюю поверхность полых изделий.

Валок состоит из рабочей части, или бочки, двух опор, или шеек, и хвостовика для передачи крутящего момента вращающемуся валку. Валки бывают цельные и составные, ручьевые и безручьевые (с гладкой цилиндрической или конической поверхностью, например, для прокатки листов или сортового профиля). Прокатные валки являются деформирующим инструментом, воспринимающим высокие удельные и суммарные давления и работающим в тяжелых условиях (температура, трение скольжения). Валки изготавливают из чугуна, стали и твердых сплавов. Обычно рабочая поверхность валков должна иметь высокую твердость, особенно при холодной прокатке, которая характеризуется большими удельными нагрузками. Диаметр рабочей поверхности валка в зависимости от назначения прокатного оборудования может лежать в широких пределах - от 1 мм до 1800 мм.

Малые диаметры применяют при холодной прокатке высокопрочных сплавов. В этом случае для обеспечения их нормальной эксплуатации применяют так называемые опорные валки, которые устанавливаются в специальных многовалковых клетях.

Прокатку осуществляют на специальном оборудовании, которое принято называть прокатным станом.Он включает комплекс технологических машин и устройств. Основное оборудование прокатного стана предназначено для выполнения главной операции в технологическом процессе - прокатки, т.е. для осуществления вращения валков и непосредственной пластической деформации заготовки для придания ей необходимой формы, размеров и свойств. Это оборудование принято называть главной линией прокатного стана. Различают станы: одновалковые, двухвалковые, многовалковые, линейные, непрерывные, полунепрерывные, заготовочные, листовые, сортовые, балочные, специальные и т.д.

Помимо пластической деформации, на прокатном стане выполняют другие разнообразные операции, включающие в себя как рассмотренную выше подготовку к прокатке, так и транспортировку, отделку и контроль качества готовой продукции.

Транспортные устройства перемещают заготовки вдоль и поперек стана, поднимают и опускают, поворачивают вокруг горизонтальной и вертикальной оси. К ним относят: рольганги, манипуляторы, кантователи и поворотные механизмы, подъемно-качающие столы, опрокидыватели, слитковозы и т.д. Оборудование для отделки и контроля проката включает: устройства для резки металла, машины для правки проката, устройства для термообработки проката, агрегаты для металлических и полимерных покрытий, устройства и приборы для контроля качества проката, машины для увязки и пакетирования проката.

4 Принципиальная схема производства

Заключение

Прокатное производство является одним из важнейших и прогрессивных этапов металлургического производства, где слитки или литую заготовку перерабатывают в готовые изделия, т.е. прокат различных форм и размеров. Сущность процесса прокатки состоит в обработке металла давлением для придания ему требуемой формы и размеров, для чего слиток или заготовку пропускают нужное количество раз между вращающимися валками определенного профиля.

Без преувеличения можно сказать, что прокатная промышленность имеет огромное значение. Стоит признать, что металлургическая промышленность является одной из ключевых составляющих технологической эры двадцатого, а теперь уже и двадцать первого века. Это капиталоемкая и долгосрочная отрасль мировой индустрии, с впечатляющим масштабом. Именно поэтому поддержание конкуренции, основанной на непрерывном совершенствовании технологического обеспечения, важно для производства.

Список использованной литературы

1.Пейсахов А.М., Кучер А.М. Материаловедение и технология конструкционных материалов: Учебник для студ. немашиностроительных спец. / Пейсахов А.М., Кучер А.М., А. М. Кучер. - УМО, 3-е изд. - СПб.: Изд-во Михайлова В.А., 2005. - 416с.

2.Основы отраслевых технологий и организации производства. / Под ред. Аносова Ю.М., Бертенева Л.Л. - СПб.: «Политехника», 2002. - 312 с.

3.Технология важнейших отраслей промышленности. / Под ред. Гинберга А.М., Хохлова Б.А. - М.: «Высшая школа», 1985. - 496 с.

4.Шепелев А.Ф., Туров А.С., Елизаров Ю.Д. Технология производства непродовольственных товаров. Серия «Учебники, учебные пособия». - Ростов-на-Дону: «Феникс», 2002. - 288 с.

5.Уланов В.Г. Металлосберегающие технологические процессы в машиностроении: Учеб. пособие. - Самара: Изд-во СГЭА, 2003. - 112 с.

Размещено на Allbest.ru

Подобные документы

    Металл для прокатного производства. Подготовка металла к прокатке. Зачистка слитков, полуфабрикатов. Нагрев металла перед прокаткой. Прокатка металла. Схемы косой, продольной и поперечной прокатки. Контроль технологических операций охлаждения металла.

    реферат , добавлен 04.02.2009

    Сущность процесса прокатки металла. Очаг деформации и угол захвата при прокатке. Устройство и классификация прокатных станов. Прокатный валок и его элементы. Основы технологии прокатного производства. Технология производства отдельных видов проката.

    реферат , добавлен 18.09.2010

    Технологическая схема обработки материалов давлением, обоснование выбора типа печи, конструкция ее узлов, расчет горения топлива и нагрева заготовки. Количество тепла, затрачиваемого на нагрев металла, потери в результате теплопроводности через кладку.

    курсовая работа , добавлен 19.01.2016

    Конструктивно-технологическая характеристика изделия. Описание сплава АМг6. Течение металла при горячей прокатке. Выбор прокатного стана, размеров слитка и режимов обжатий. Технология производства листов. Режимы их окончательной термической обработки.

    курсовая работа , добавлен 07.10.2013

    Нагрев металла перед прокаткой. Автоматизация процесса нагрева металла. Выбор системы регулирования давления. Первичный измерительный преобразователь перепада давления. Метод наименьших квадратов. Измерение и регистрация активного сопротивления.

    курсовая работа , добавлен 25.06.2013

    Роль и задачи холодной прокатки металла. Детальный анализ технического процесса производства холоднокатаного листа. Характеристика колпаковых печей. Принципы работы дрессировочных станов. Устройства управления, используемые на производстве проката.

    отчет по практике , добавлен 25.06.2014

    Конструкция сталеразливочных ковшей. Характеристика устройства для регулирования расхода металла и установок для продувки стали инертным газом. Вакуумирование металла в выносных вакуумных камерах. Продувка жидкого металла порошкообразными материалами.

    реферат , добавлен 05.02.2016

    Характеристика производства холоднокатаных листов. Исходная заготовка и ее подготовка к прокатке, типы станов холодной прокатки. Технология производства листов из углеродистой стали, виды дефектов и их предотвращение, технико-экономические показатели.

    курсовая работа , добавлен 17.12.2009

    Технологическая схема производства. Исходная заготовка сортового стана. Нагрев заготовки и выбор станка. Агрегаты и механизмы стана. Агрегаты и механизмы линии стана. Агрегаты и механизмы поточных технологических линий цеха. Охлаждение проката и отделка.

    курсовая работа , добавлен 10.01.2009

    Выбор стали для заготовки, способа прокатки, основного и вспомогательного оборудования, подъемно-транспортных средств. Технология прокатки и нагрева заготовок перед ней. Расчет калибровки валков для прокатки круглой стали для напильников и рашпилей.

Исходной заготовкой при прокатке являются слитки: стальные массой до 60 т, из цветных металлов и их сплавов обычно массой до 10 т. При прокатке сортовых профилей стальной слиток массой до 12 т в горячем состоянии прокатывается на крупных обжимных дуо-станах - блюмингах. Получающиеся после прокатки на блюмингах заготовки, чаще квадратного сечения, называются блюмами, они являются полуфабрикатом для дальнейшей прокатки сортовых профилей. Размеры блюмов от 450 х 450 до 150 х 150 мм. Блюмы затем прокатывают на сортовых станах, в которых заготовка последовательно проходит через ряд калибров. Разработку системы последовательных калибров, необходимых для получения того или иного профиля, называют калибровкой. Калибровка является сложным и ответственным процессом. Неправильная калибровка может привести не только к снижению производительности, но и к браку изделий. Чем больше разница в размерах поперечных сечений исходной заготовки и конечного изделия и чем сложнее профиль последнего, тем большее количество калибров требуется для его получения. В зависимости от стадии процесса прокатки различают калибры обжимные (уменьшающие сечение заготовки), черновые (приближающие сечение заготовки к заданному профилю) и чистовые (дающие окончательный профиль).

При прокатке толстых листов стальной слиток массой до 45 т в горячем состоянии прокатывают на крупном обжимном универсальном стане - слябинге или на блюминге. Получаемый полуфабрикат - сляб имеет приближенно прямоугольное сечение толщиной 65-300 мм и шириной 600-1600 мм. Сляб прокатывают (после второго нагрева) в толстый лист большей частью на станах с двумя рабочими клетями (черновой и чистовой), расположенными друг за другом. Перед черновой клетью сбивают окалину. Чистовая клеть кварто имеет рабочие валки меньшего диаметра, чем черновая. После прокатки листы правят и обрезают на заданные размеры.

Тонкие листы прокатывают в горячем и холодном состояниях. Современными станами для горячей прокатки тонколистовой стали являются непрерывные станы, состоящие из двух групп рабочих клетей - черновой и чистовой. Нагретые слябы подают по рольгангу к окалиноломателю, в котором окалина дробится при деформировании в валках с небольшими обжатиями, а затем сбивается водой под давлением до 12 Мн/м 2 . В черновых клетях листы прокатывают с максимальными обжатиями до толщины 15-35 мм. Для получения точного по толщине листа важно соблюдать постоянство температуры прокатки в чистовых клетях. Поэтому после черновых клетей устанавливают воздушное охладительное устройство, понижающее при необходимости температуру листа. Затем лист проходит через чистовой окалиноломатель и поступает в чистовую группу клетей, где может прокатываться до минимальной толщины (1,2 мм). Выходящий из чистовых клетей лист сматывается в рулоны.

Горячекатаные тонкие листы в рулонах поступают на дальнейшую холодную прокатку или передаются на отделочные операции (правку, разрезку и др.), если дальнейшей холодной прокатки не требуется.

Листы тоньше 2 мм в горячем состоянии прокатывать сложно из-за их быстрого остывания: такие листы, как правило, получают холодной прокаткой, которая обеспечивает высокое качество их поверхности и большую точность по толщине. Чаще всего холодную прокатку ведут рулонным способом. Предварительно горячекатаный лист очищают от окалины травлением в кислотах с последующей промывкой. Прокатывают на непрерывных станах кварто и на многовалковых станах; после холодной прокатки материал проходит отделочные операции: отжиг в защитных газах, обрезку кромок, разрезку на мерные листы, полирование и др.

Все большее развитие получает бесслитковая прокатка - получение проката непосредственно из жидкого металла, минуя операции отливки слитков и их горячей прокатки, а также целый ряд вспомогательных операций. В этом случае расплавленный в плавильной печи металл заливают в миксер, откуда он по наклонному закрытому желобу поступает в распределительную коробку, установленную перед валками прокатной клети. Распределительная коробка обеспечивает непрерывное, равномерное поступление жидкого металла в щель между валками-кристаллизаторами, где он кристаллизуется, обжимается и выходит в виде заданного профиля. Таким способом получают, например, алюминиевую ленту толщиной 8-12 мм.

При прокатке бесшовных труб первой операцией является прошивка - образование отверстия в слитке или круглой заготовке. Эту операцию выполняют в горячем состоянии на прошивных станах. Наибольшее применение получили прошивные станы с двумя бочкообразными валками, оси которых расположены под небольшим углом (4-14 °) друг к другу. Оба валка вращаются в одном и том же направлении, т. е. в данном случае используется принцип поперечно-винтовой прокатки. Благодаря такому расположению валков заготовка получает одновременно вращательное и поступательное движения. При этом в металле возникают радиальные растягивающие напряжения, которые вызывают течение металла от центра в радиальном направлении и облегчают прошивку отверстия оправкой, устанавливаемой на пути движения заготовки. Во входном конусе прошивают заготовку, а в выходном конусе раскатывают металл между оправкой и валками и формируют окончательный размер изделия (гильзы).

Загрузка...