last-tochka.ru

Применение электролиза в промышленности. Самое широкое применение электролиза Применение электролиза сообщение по физике

Электролиз нашел широкое применение в технике, например в металлургии, химической промышленности и т. д.

1. Покрытие металлов слоем другого металла при помощи электролиза (гальваностегия).

Для предохранения металлов от окисления, а также для придания изделиям прочности и лучшего внешнего вида их покрывают тонким слоем благородных металлов

(золото, серебро) или малоокисляющимися металлами (хром, никель).

Предмет, подлежащий гальваническому покрытию, тщательно очищают, полируют и обезжиривают, после чего погружают в качестве катода в гальваническую ванну. Электролитом является раствор соли металла, которым осуществляется покрытие. Анодом служит пластина из того же металла. На рис. 45 изображена ванна для никелирования. Электролитом служит водный раствор вещества, содержащего никель (например, сернокислый никель NiS04), катодом является предмет, подвергающийся покрытию. Величина
тока, пропускаемого через ванну, должна соответствовать величине t покрываемой поверхности. Для равномерного покрытия предмета его помещают между двумя анодными пластинами. После покрытия предмет вынимают из ванны, сушат и полируют.

2. Получение копий с предметов при помощи электролиза (гальвано­пластика).

Для получения копий с металлических предметов (монет, медалей, барельефов и т. п.) делают слепки из какого-нибудь пластичного материала (например, воска). Для придания слепку электропроводимости его покрывают графитовой пылью, погружают в ванну в качестве катода и получают на нем слой металла нужной толщины. Затем путем нагревания удаляют воск.

Производство патефонных пластинок основано на применении гальванопластики (рис. 40). Восковая пластина с нанесенной на ней записью, опыленная для электропроводимости золотом, погружается в раствор медного купороса в качестве катода. Медный анод поддерживает концентрацию раствора постоянной. Полученный металлический рельефный негативный отпечаток служит для штампования из нагретой пластмассы большого числа патефонных пластинок.

Гальванопластика применяется во многих отраслях промышленности, в том числе в полиграфии. Процесс гальванопластики был разработан в 5836 г. русским академиком Борисом Семеновичем Якоби (1801-1874). Б. С. Якоби известен своими многочисленными работами в области электротехники. Он является изобретателем первого электродвигателя с непосредственным вращением вала, коллектора для выпрямления тока, пишущих телеграфных аппаратов, а также первого в мире буквопечатающего телеграфного аппарата; им впервые (в 1838 г.) осуществлено движение лодки при помощи электрической энергии.

Якоби созданы приборы для измерения электрического сопротивления, изготовлен эталон сопротивления, сконструирован вольтметр.

3. Рафинирование (очистка) металлов.

В электротехнике благодаря хорошей электропроводимости наиболее широкое применение как проводниковый материал имеет

медь. Медные руды, кроме меди, содержат много примесей, таких, как, например, железо, сера, сурьма, мышьяк, висмут, свинец, фосфор и т. п. Процесс получения меди из руды заключается в следующем. Руду измельчают и обжигают в особых печах, где некоторые примеси выгорают, а медь переходит в окись меди, которую снова плавят в печах вместе с углем. Происходит восстановительный процесс, и получают продукт,

называемый черной медью, с содержанием меди 98-99%. Медь, идущая на нужды электротехники, должна быть наиболее чистой, так как всякие примеси уменьшают электропроводимость меди. Такая медь получается из черной меди путем рафинирования ее электрическим способом.

Неочищенная медь подвешивается в качестве анода в ванну с раствором медного купороса (рис. 47). Катодом служит лист чистой меди. При пропускании через ванну электрического тока медь с анода переходит в раствор, а оттуда осаждается на катод. Электролитическая медь содержит до 99,95% меди.

Медь в электротехнике применяется для изготовлений голых к изолированных проводов, кабелей, обмоток электрических машин и трансформаторов, медных полос, лент, коллекторных пластин, деталей машин и аппаратов.

Второе место после меди в электротехнике занимает алюминий. Сырьем для получения алюминия служат бокситы, состоящие из окиси алюминия (до 70%), окиси кремния и окиси железа. В результате обработки бокситов щелочью получается продукт, называемый глиноземом (Аl 2 O 3).

Глинозем с некоторыми добавлениями (для снижения температуры плавления) загружается в огнеупорную печь, стенки и дно которой выложены угольными пластинами, соединенными с отрицательным полюсом источника напряжения. Через крышку печи проходит угольный стержень, который служит анодом. Сначала опускают угольный анод, в результате чего возникает электрическая дуга, которая расплавляет глинозем. В дальнейшем происходит электролиз расплавленной массы. Чистый алюминий скапливается на дне сосуда, откуда его выливают в формы. Процентное содержание алюминия в металле достигает 99,5%. Для получения алюминия требуется большое количество электроэнергии. Поэтому алюминиевые заводы строятся около больших гидроэлектростанций с дешевой электроэнергией.

Алюминий в электротехнике употребляется для изготовления проводов, кабелей, получения некоторых сплавов.

Законы электролиза

С количественной стороны процесс электролиза был впервые изучен в тридцатых годах XIX века английским физиком Майклом Фарадеем (1791-1867), который установил два закона электролиза:

1. Масса образующегося при электролизе вещества пропорциональна количеству электричества прошедшего через раствор или расплав электролита;

2. При электролизе различных химических соединений равные количества электричества приводят к образованию на электродах эквивалентных количеств разных веществ.

Для выделения при электролизе одного эквивалента вещества необходимо затратить 96500 кулонов. Величина 96500 Кл/моль называется постоянной Фарадея (F). Так при пропускании 96500 кулонов электричества через раствор CuCℓ 2 на катоде выделяется один моль-эквивалента меди (31,77 г) и одновременно на аноде выделяется одна молярная масса эквивалента хлора (35,45 г).

Законы Фарадея можно выразить уравнением

m= М э It/F = М э It/96500 или V = V э It/F = V э It/96500,

где m(V) –масса (объем) окисленного или восстановленного вещества, г (дм 3); М э (V э) - молярная масса (объем эквивалента), г/моль (дм 3); I - сила тока, А; t - продолжительность электролиза, с.

Если It = 1 Кл, то масса выделившегося вещества составит М э /F = Е. Величина Е называется электрохимическим эквивалентом вещества окисляющегося или восстанав­ливающегося на электродах при прохождении через электролит 1 Кл электричества. Масса эквивалента связана с электрохимическим эквивалентом М э = ЕF.

При практическом проведении электролиза расход тока превышает количество его, рассчитанное согласно закону Фарадея. Происходит это вследствие протекания тех или иных побочных процессов, поэтому в электрохимии используют понятие выход по току (η, %). Выход по току отношение массы полученного веществ(m практ) к массе, теоретически вычисленной (m те o р)

η = (m практ /m теор)100%

Процессы электролиза получили широкое и разностороннее применение в промышленности:

1 . Электролизом расплавов хлоридов щелочных и щелочноземельных металлов получают Na, К, Са, Мg и др. Металлический алюминий получают электролизом расплава оксида алюминия в расплавленном криолите 3NаF∙А1F 3 . Путем электролиза водного раствора поваренной соли получают едкий натр (каустическую соду) и хлор. Получение водорода, в больших количествах применяемого для синтеза NH 3 , НС1 и др., осуществляется электролизом H 2 O (используют не чистую воду, а растворы электролитов, ионы которых разряжаются труднее, чем Н + и ОН -);

2. Электролитическое окисление в случае, если на аноде выделяются О 2 и Сl 2 , используют для окисления и хлорирования находящихся в растворе веществ. Электролити-



ческое восстановление в случае, когда на катоде выделяется атомарный водород, часто применяется для гидрирования находящихся в растворе неорганических и органических веществ;

3. Гидроэлектрометаллургия – важная отрасль металлургии цветных металлов (Cu, Bi, Sb, Pb, Ni, Co, Cd, Zn); она применяется также для получения благородных и рассеянных металлов. Электролиз используют непосредственно для катодного выделения металла после того, как он переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называется электроэкстракцией ;

4. Электролиз применяется для очистки и получения особо чистых материалов (рафинирование металлов). Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Чаще всего этот процесс используется для получения электролитически чистой меди. Листы неочищенной (черновой) меди служат анодом. Процесс сводится к растворению анода и выделению чистой меди на катоде; электролит регенерируется и сохраняется в растворе.

5. Электролитическое покрытие менее благородного металла более благородным металлом (гальваностегия ) широко используется для никелирования, хромирования, серебрения, меднения. Хромирование применяется для повышения коррозионной стойкости черных металлов, а также для увеличения твердости поверхностного слоя и сопротивления стиранию. Никелирование используется для изменения внешнего вида изделия. Цинкование и лужение - для защиты от коррозии. Меднение - для нанесения припоя и т.д. Гальваностегия осуществляется аналогично рафинированию меди. Покрываемое изделие служит катодом, покрывающий металл - анодом.

6. Гальванопластика - получение точных копий изделий с использованием электролиза. С ее помощью получают очень тонкослойные изделия для радиотехники и приборостроения. Например, на алюминиевую деталь сложной геометрической формы электролизом наносят слой меди нужной толщины. Затем алюминий растворяют в соляной кислоте или растворе щёлочи, с которыми медь не реагирует. Получают изделие с толщиной стенок, исчисляемой микронами.

Электролиз нашел применение также для травления, оксидирования, полирования, заточки металлов и т.д.

При прохождении через раствор или расплав электролита электрического тока, на электродах происходит выделение растворенных веществ или иных веществ, являющихся продуктами вторичных реакций на электродах. Этот физико-химический процесс и называется электролизом.

Суть электролиза

В создаваемом электродами электрическом поле, ионы в проводящей жидкости приходят в упорядоченное движение. Отрицательный электрод — это катод, положительный — анод.

К аноду устремляются отрицательные ионы, называемые анионами (ионы гидроксильной группы и кислотные остатки), а к катоду — положительные ионы, называемые катионами (ионы водорода, металлов, аммония и т. д.)

На электродах протекает окислительно-восстановительный процесс: на катоде происходит электрохимическое восстановление частиц (атомов, молекул, катионов), а на аноде — электрохимическое окисление частиц (атомов, молекул, анионов). Реакции диссоциации в электролите — это первичные реакции, а реакции, которые протекают непосредственно на электродах, называются вторичными.

Разделение реакций электролиза на первичные и вторичные помогло Майклу Фарадею установить законы электролиза:

    Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

    Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

m — масса осаждённого на электроде вещества, Q — полный электрический заряд, прошедший через вещество F = 96 485,33(83) Кл·моль−1 — постоянная Фарадея, M — молярная масса вещества (Например, молярная масса воды H2O = 18 г/моль), z — валентное число ионов вещества (число электронов на один ион).

Заметим, что M/z — это эквивалентная масса осаждённого вещества. Для первого закона Фарадея M, F и z являются константами, так что чем больше величина Q, тем больше будет величина m. Для второго закона Фарадея Q, F и z являются константами, так что чем больше величина M/z (эквивалентная масса), тем больше будет величина m.

Электролиз широко применяется сегодня в промышленности и в технике. Например, именно электролиз служит одним из эффективнейших способов промышленного получения водорода, пероксида водорода, диоксида марганца, алюминия, натрия, магния, кальция и прочих веществ. Применяется электролиз для очистки сточных вод, в гальваностегии, в гальванопластике, наконец — в химических источниках тока. Но обо всем по порядку.

Благодаря электролизу многие металлы извлекается из руд и подвергается дальнейшей переработке. Так, когда руду или обогащенную руду — концентрат — подвергают обработке реагентами, металл переходит в раствор, затем путем электроэкстракции металл выделяют из раствора. Чистый металл выделяется при этом на катоде. Таким путем получают цинк, медь, кадмий.

Электрорафинированию металлы подвергают для устранения примесей и чтобы перевести содержащиеся примеси в удобную для дальнейшей переработки форму. Металл, подлежащий очистке, отливают в виде пластин, и применяют эти пластины в качестве анодов при электролизе.

Когда ток проходит, металл анода растворяется, переходит в виде катионов в раствор, затем катионы разряжаются на катоде, и образуют осадок чистого металла. Примеси анода не растворяются - выпадают анодным шламом, или переходят в электролит, откуда непрерывно или периодически удаляются.

Рассмотрим в качестве примера электрорафинирование меди . Главный компонент раствора - сульфат меди — наиболее распространенная и дешевая соль этого металла. Раствор обладает низкой электрической проводимостью. Для ее увеличения в электролит добавляют серную кислоту.

Кроме того, в раствор вводят небольшие количества добавок, способствующих получению компактного осадка металла. Вообще, электролитическому рафинированию подвергают медь, никель, свинец, олово, серебро, золото.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции и электрофлотации). Электрохимический метод очистки — один из наиболее часто применяемых. Для электролиза используют нерастворимые аноды (магнетит, оксид свинца, графит, марганец, которые наносят на титановую основу), или растворимые (алюминий, железо).

Такой метод применяют для выделения из воды токсичных органических и неорганических веществ. К примеру, медные трубы очищают от окалины раствором серной кислоты, и промышленные сточные воды приходится затем очищать путем электролиза с нерастворимым анодом. На катоде выделяется медь, которая снова может использоваться на том же предприятии.

Щелочные сточные воды очищают электролизом от цианистых соединений. С целью ускорения окисления цианидов, повышения электропроводности и экономии электроэнергии, к водам применяют добавку в виде хлорида натрия.

Электролиз проводят с графитовым анодом и стальным катодом. Цианиды разрушаются в ходе электрохимического окисления и хлором, который выделяется на аноде. Результативность такой очистки близка к 100%.

Кроме непосредственно электохимической очистки можно включить в процесс электролиза коагуляцию . Исключив добавки солей, электролиз проводят с растворимыми алюминиевыми или железными анодами. Тогда не только разрушаются загрязнители на аноде, но и растворяется сам анод. Образуются активные дисперсные соединения, которые коагулируют (сгущают) коллоидно-дисперсные загрязнения.

Этот метод эффективен при очистке сточных вод от жиров, нефтепродуктов, красителей, масел, радиоактивных веществ и т. д. Он называется электрокоагуляцией.

Гальваностегия — это электролитическое нанесение определенных металлов с целью защиты изделий от коррозии и для придания им соответствующего эстетического оформления (покрытие производят хромом, никелем, серебром, золотом, платиной и т. п.). Вещь тщательно очищают, обезжиривают, и используют как катод в электролитической ванне, в которую налит раствор соли того металла, которым необходимо покрыть изделие.

В качестве анода применяют пластину из этого же металла. Как правило применяют пару анодных пластин, а подлежащий гальваностегии предмет располагают между ними.

Гальванопластика - осаждение металла на поверхности разных тел для воспроизведения их формы: формы для отливки деталей, скульптур, печатных клише и т.д.

Гальваническое осаждение металла на поверхности предмета возможно лишь тогда, когда поверхность эта или весь предмет являются проводниками электрического тока, поэтому для изготовления моделей или форм желательно использовать металлы. Наиболее подходят для этой цели легкоплавкие металлы: свинец, олово, припои, сплав Вуда.

Эти металлы мягки, легко обрабатываются слесарным инструментом, хорошо гравируются и отливаются. После наращивания гальванического слоя и отделки металл формы выплавляют из готового изделия.

Однако наибольшие возможности для изготовления моделей все же представляют диэлектрические материалы. Чтобы металлизировать такие модели, нужно придать их поверхности электропроводность. Успех или неудача в конечном итоге зависят в основном от качества токопроводящего слоя. Слой этот может быть нанесен одним из трех способов.

Самый распространенный способ — графитирование , он пригоден для моделей из пластилина и других материалов, допускающих растирание графита по поверхности.

Следующий прием — бронзирование , способ хорош для моделей относительно сложной формы, для разных материалов, однако за счет толщины бронзового слоя несколько искажается передача мелких деталей.

И, наконец, серебрение , пригодное во всех случаях, но особенно незаменимое для хрупких моделей с очень сложной формой — растений, насекомых и т. п.

Химические источники тока

Также электролиз является основным процессом, благодаря которому функционируют самые современные химические источники тока, например батарейки и аккумуляторы. Здесь присутствуют два электрода, контактирующие с электролитом.

Лимонная батарейка (для увеличения нажмите нажмите на картинку)

Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделённых процессов: на отрицательном аноде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи к положительному катоду, создавая разрядный ток, где они участвуют в реакции восстановления окислителя. Таким образом, поток отрицательно заряженных электронов по внешней цепи идет от анода к катоду, то есть от отрицательного электрода к положительному.

Сущность процесса электролиза

Электролиз

В качестве примера рассмотрим процессы, протекающие при электролизе водного раствора хлорида меди. Указанный раствор поместим в сосуд, называемый электролизером и погрузим в него два графитовых стержня. При растворении хлорида меди в воде происходит его полная диссоциация и образующиеся ионы Cu 2+ и Cl - беспорядочно движутся в растворе. Возьмем источник постоянного электрического тока - выпрямитель или аккумулятор и к его клеммам присоединим графитовые стержни. Движение ионов в растворе станет упорядоченным: положительные ионы Cu 2+ будут перемещаться по направлению к отрицательному электроду, называемому катодом , а ионы Cl - - к положительному электроду - аноду . Поэтому положительные ионы называют катионами , а отрицательные - анионами . Ион Cu 2+ , подходя к катоду, где есть избыточные электроны, присоединяет два электрона, превращаясь в нейтральный атом - на поверхности катода появляется слой металлической меди:

(–) Cu 2+ + 2e ® Cu

Ионы Cl - отдают на анод свои электроны и превращаются в молекулы хлора:

(+) 2Cl - - 2e ® Cl 2

Таким образом, в результате пропускания постоянного тока через раствор хлорида меди мы получили два новых вещества - металлическую медь и газообразный хлор.

Электролизом называется окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролита.

На катоде происходит процесс восстановления, а на аноде - процесс окисления.

Напомним, что в гальваническом элементе катодом называется положительный электрод, а анодом - отрицательный. Главное состоит в том, что и в гальваническом элементе и при электролизе на катоде идет восстановление, а на аноде - окисление .

Рассматривая принцип работы гальванического элемента, мы отмечали, что протекающие в нем процессы всегда являются самопроизвольными . Напротив любой электролиз - процесс несамопроизвольный , т.е. требует затраты энергии в виде электрического тока. Источник постоянного тока играет роль своеобразного насоса, который перекачивает электроны с анода на катод. Характер процессов, протекающих на электродах при электролизе зависит от природы электролита и растворителя, материала, из которого изготовлены электроды и других факторов.

Электролиз находит широкое применение в различных областях техники. Приведем основные направления использования этого процесса.

1.Получение металлов .

Выделение в чистом виде алюминия и металлов IА и IIА групп таблицы Менделеева производится электролизом расплавленных соединений, а остальных металлов – электролизом водных растворов.

2.Очистка металлов .

Для этого применяется электролиз с растворимым анодом.

3.Получение металлических покрытий .

Гальванические покрытия металлов осуществляются в декоративных целях, для защиты от коррозии, повышения твердости и электропроводности. Осаждение металла осуществляется электролизом водного раствора соли, причем покрываемое изделие завешивается в электролизер в качестве катода.

4.Анодирование алюминия и его сплавов .

В качестве электролита берется раствор серной кислоты, катодом служит свинцовая пластина, а анодом подлежащее анодированию изделие. В ходе электролиза на аноде образуется пленка оксида алюминия, предохраняющая изделие от коррозии. В пленке имеются многочисленные поры, которые могут быть заполнены красителем или светочувствительным составом - это используется для окраски алюминиевых предметов и получения на них фотографических изображений.

5.Получение различных химических веществ .

Примером таких процессов может служить электролиз водного раствора хлорида натрия. В процессе электролиза на катоде выделяется водород, на аноде - хлор, а в растворе накапливается щелочь NaOH.

6.Защита от коррозии .

Катодная защита основана на процессе электролиза, в котором защищаемый объект присоединяется к отрицательному полюсу источника тока, т.е. играет роль катода, на котором происходит восстановление воды.

ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

1.Какая величина называется удельной электрической проводимостью? В каких единицах она измеряется?

2.Что называется константой кондуктометрической ячейки? Как ее определяют?

3.От каких факторов зависит величина удельной проводимости?

4.Постройте график зависимости удельной проводимости сильных и слабых электролитов от концентрации. Объясните характер кривых.

5.Какая величина называется молярной электрической проводимостью? Как она связана с удельной проводимостью?

6.Постройте график зависимости молярной проводимости сильных и слабых электролитов от концентрации. Объясните характер линий.

7.Какая величина называется предельной молярной проводимостью? Как ее определяют?

8.Что характеризует коэффициент электропроводности сильного электролита? Как его определяют?

9.В чем заключается сущность закона независимости движения ионов? Для чего этот закон применяют?

10.Как можно кондуктометрическим методом определить степень диссоциации слабого электролита?

11.Сопротивление раствора хлорида калия с концентрацией 0,01моль×дм -3 , измеренное при 180°С, равно 1,23 Ом. Удельная проводимость этого раствора при 180°С равна 1,22 См×см -1 . Чему равна константа кондуктометрической ячейки?

12.Постоянная кондуктометрической ячейки равна 0,42 см -1 . Электропроводность раствора нитрата серебра с концентрацией 0,1моль/дм 3 , измеренная в этой ячейке, равна 0,0284 См. Чему равна молярная электрическая проводимость нитрата серебра при указанной концентрации?

13.Молярная электрическая проводимость 0,2 моль/дм 3 раствора хлорида калия равна 12,4 См×см 2 ×моль -1 . Предельная молярная проводимость хлорида калия равна 149,9 См×см 2 ×моль -1 . Чему равен коэффициент электропроводности? Как эта величина будет изменяться при разбавлении раствора? Почему?

14.Константа диссоциации гидроксида аммония равна 1,8×10 -5 , а предельная молярная проводимость составляет 271,8 См×см 2 ×моль -1 . Чему равна молярная проводимость 1×10 -1 моль×дм -3 раствора гидроксида аммония?

15.Каков механизм возникновения потенциала на границе металл-раствор?

16.От каких факторов зависит величина электродного потенциала? Напишите уравнение Нернста?

17.Что представляет собой водородный электрод? Напишите для него уравнение Нернста.

18.По какому принципу построен ряд напряжений? Какие выводы можно сделать на основании положения металла в ряду напряжений при рассмотрении реакций замещения, процессов электрохимической коррозии и электролиза?

19.Что представляет собой электрод второго рода? Напишите уравнение Нернста.

20.Напишите уравнение Нернста для окислительно-восстановительного электрода. Какие свойства вещества характеризует величина стандартного окислительно-восстановительного потенциала?

21.Сформулируйте условие самопроизвольного протекания окислительно-восстановительных реакций.

22.Как устроен стеклянный электрод? Для чего он применяется?

23.Чему равен потенциал платинового электрода, погруженного в раствор, содержащий 0,02 моль/дм 3 сульфата железа(II) и 0,002 моль/дм 3 сульфата железа(III) по отношению к стандартному водородному электроду?

24.Потенциал водородного электрода в растворе уксусной кислоты равен - 120 мВ по отношению к стандартному водородному электроду. Чему равен рН раствора?

25.Что представляет собой гальванический элемент? Какую роль играет в нем солевой мостик?

26.Какой электрод в гальваническом элементе называется катодом? Анодом? Почему катод в гальваническом элементе и при электролизе имеют разные знаки?

27.Что называется электродвижущей силой гальванического элемента? Как ее рассчитывают?

28.Нарисуйте схему измерения э.д.с. Почему ее не измеряют вольтметром?

29.Какая химическая реакция протекает в гальваническом элементе: Zn/ZnSO 4 // H 2 SO 4 /H 2 (Pt), если С(ZnSO 4) = 0,01 моль/дм 3 , С(H 2 SO 4) = 5×10 -4 моль×дм -3 . Какова э.д.с. этого элемента?

30.Составьте схемы гальванических элементов, в которых протекают следующие токообразующие реакции:

а) Fe + NiCl 2 = Ni + FeCl 2 в) CuSO 4 + H 2 = Cu + H 2 SO 4

б) Fe + H 2 SO 4 = FeSO 4 + H 2 г) Cr +2 + Fe +3 = Cr +3 + Fe +2

31.Какие гальванические элементы называются концентрацион-ными? Какие процессы в них протекают и как они отражаются на величине э.д.с.?

32.Как устроен топливный элемент и в чем его преимущество перед другими источниками электрической энергии?

33.Какие из следующих реакций могут протекать самопроизвольно в прямом направлении:

а) MnO 4 - + Fe 2+ ® Mn 2+ + Fe 3+

б) KCl + Br 2 ® KBr + Cl 2

в) Cu + H 2 SO 4 ® CuSO 4 + H 2

г) Fe 3+ + KI ®Fe 2+ + I 2

е) Sn +4 + Fe +2 ® Sn +2 + Fe +3

ж) Ni + FeSO 4 ®Fe + NiSO 4

34.Рассчитайте константы равновесия следующих реакций:

а) Fe +3 + Ag « Fe +2 + Ag +

б) Sn +4 + H 2 « Sn +2 + 2H +

в) 2Ce +4 + 2Cl - « 2Ce +3 + Cl 2

г) Fe +3 + Cr +2 « Fe +2 + Cr +3

35.Какой процесс называется электрохимической коррозией? В чем состоит принципиальное отличие коррозии в кислой среде от коррозионных процессов в нейтральной и щелочной средах?

36.Напишите схемы катодных и анодных процессов при коррозии:

а) пары медь - цинк в нейтральной среде;

б) пары железо - никель в кислой среде;

в) пары олово - цинк в нейтральной среде;

г) пары алюминий - медь в нейтральной среде.

37.Какие процессы будут происходить при нарушении цинкового покрытия на железной детали во влажном воздухе?

38.Какие покрытия называются катодными? Какие процессы происходят при нарушении катодного покрытия?

39. В чем заключается принцип протекторной защиты от коррозии? Как осуществляется катодная защита?

Электролиз – окислительно-восстановительные реакции, протекающие под действием постоянного электрического тока на поверхности электродов, помещенных в расплав или раствор электролита.

На отрицательно заряженном электроде – катоде – происходит процесс восстановления ионов или молекул электролита, а на положительно заряженном – аноде – процесс окисления. Последовательность протекания электродных реакций при электролизе зависит от многих факторов, основными из которых являются состав электролита, материал электродов, плотность тока, температура и др. Эти факторы влияют на величины потенциалов электродных систем, образующихся при электролизе, которые и будут определять возможность преимущественного протекания той или иной реакции. Для определения наиболее вероятных катодных и анодных реакций необходимо знать значения равновесных потенциалов и вид поляризационных кривых (см. 8.4) всех возможных электродных систем, которые могут возникнуть при электролизе.

Катодный процесс. Независимо от материала катода на нем будет протекать реакция восстановления только ионов металла () при электролизе расплавов и ионов металла или ионов водорода (молекул воды) при электролизе водных растворов электролитов.

Возможные катодные реакции при электролизе расплава электролита: восстановление катионов металла + ® .

Возможные катодные реакции при электролизе водного раствора: восстановление катионов металла + ® ,

восстановление ионов водорода 2H 2 O + 2ē ®H 2 ­ + 2OH - (pH ³7);

2H + + 2ē ®H 2 ­ (pH <7).

Последовательность протекания катодных реакций определяется величиной электродных потенциалов систем, которые возникают при протекании в системе тока. В первую очередь будут восстанавливаться более сильные окислители (Ox i ), т. е. ионы или молекулы с большим значением электродного потенциала ( > > >…> ).

Катодные процессы, протекающие при электролизе водного раствора электролита, условно можно разделить на три группы (рис.8.13).

Рис. 8‑13 Схема поляризационных кривых восстановления ионов металлаи молекул воды на катоде при рН =const

1. Восстановление только ионов металла: Me n + + ® Me 0 .

Данная реакция протекает при электролизе растворов, содержащих катионы, стандартные потенциалы которых больше потенциала стандартного водородного электрода, т. е. . Этому случаю на рис.8.13 соответствует ион металла . В системе, независимо от величины плотности тока и pH раствора, . При токе i потенциал катода равен j 1, а скорость выделения металла определяется величиной .

Если в растворе имеется несколько катионов, стандартные потенциалы которых положительны: , то среди них в первую очередь восстанавливаются те, у которых величина электродного потенциала больше.

При электролизе расплавов в системе не образуется водородный электрод и на катоде восстанавливаются металлы с любым значением стандартного электродного потенциала.

2. Восстановление только молекул воды или ионов водорода. При pH ³7 реакция записывается как 2H 2 O + 2ē ®H 2 ­ + 2OH - , а при pH <7 – 2H + + 2ē ®H 2 ­.

Данная реакция протекает при электролизе растворов, содержащих катионы, стандартные потенциалы которых существенно меньше потенциала стандартного водородного электрода: В. В этом случае, независимо от величины плотности тока и pH раствора, . Этому случаю на рис.8.13 соответствует ион металла . При токе i потенциал катода равен j 2, а скорость выделения водорода определяется величиной .

3. Если В, то, в зависимости от условий, в основном от плотности тока и от концентрации ионов водорода (pH электролита), возможно восстановление как ионов металла, так и молекул воды или ионов водорода.

Вероятность протекания этих реакций определяется величиной неравновесных электродных потенциалов водородного и металлического электродов. Этому случаю на рис.8.13 соответствует ион металла . При малых плотностях тока (i) и происходит восстановление преимущественно водорода. При больших плотностях тока(i >i p ) одновременно протекают обе реакции, причем скорость восстановления металла () больше, чем скорость восстановления водорода (). В точке р скорости восстановления металла и водорода равны. При больших величинах плотности тока >> , т. е. на катоде будет происходить преимущественно восстановление ионов металла.

Примечание .На катоде может происходить восстановление и других ионов или молекул окислителей, содержащихся в раствореOx + nē ® Red, например,

O 2 + 2H 2 О + 4ē ® 4ОH - .

Анодный процесс . В отличие от катода, на котором происходил процесс восстановления компонентов электролита, анодной реакцией может быть реакция окисления как ионов и молекул электролита, так и вещества самого анодаRed i ® Ox i + nē . Последовательность протекания анодных реакций определяется величиной электродных потенциалов, которые возникают при протекании в системе тока. В первую очередь будут окисляться частицы-восстановители (Red i ) с меньшим значением электродного потенциала ( < < <…< ).

Анодные процессы, протекающие при электролизе водного раствора электролита, условно можно разделить на три группы (рис.8.14).

1. Электролиз с растворимым анодом (активный анод) . Если материалом анода служит металл, потенциал которого меньше потенциала кислородного электрода или других частиц, присутствующих в электролите, то происходит окисление металла: Me 0 ® Me n + + . 1 . При токе i потенциал анода равен j 1, а скорость растворения металла определяется величиной .

2. Электролиз с нерастворимым анодом (инертный анод) . Если потенциал металла или любого другого проводника первого рода, используемого в качестве анода, больше потенциала кислородного электрода или других частиц, содержащихся в электролите, то материал анода не участвует в реакции окисления. В качестве инертных анодов используются графит, золото, металлы платиновой группы и другие материалы.


Рис. 8‑14 Схема поляризационных кривых окисления металла, молекул воды и анионов на аноде при рН =const

Если в водном растворе электролита присутствуют кислородосодержащие анионы, например SO 4 2- , NO 3 - , PO 4 3- и др., электродный потенциал которых больше потенциала кислородного электрода, то на аноде происходит только реакция окисления молекул воды (pH £7) или ионов ОH - (pH >7):

2H 2 O ® О 2 ­ + 4H + + 4ē при pH £7,

4ОH - ® О 2 ­ + 2H 2 O + 4ē при pH >7.

На рис.8.14 этому случаю соответствует поляризационная кривая 2 . При токе i потенциал анода равен j 2, а скорость выделения кислорода определяется величиной .

3. Электролиз с инертным анодом электролитов, содержащих анионы галогенводородных кислот (Cl - , Br - , I -). Вследствие высокой поляризации реакции выделения кислорода на аноде в первую очередь окисляются ионы галогена, образуется иод (I 2), бром (Br 2). В случае с хлорид-ионом при малых плотностях тока идет выделение кислорода, а при больших плотностях преимущественно окисляются ионы Cl - с образованием хлора:

2Cl - ® 2ē + Cl 2 ­

На рис.8.14 этому случаю соответствует поляризационная кривая 3 . При потенциале анода j 3 скорость выделения хлора определяется величиной , а кислорода .

Примечание .Фтор, вследствие большой величины электродного потенциала, при электролизе водных растворов не образуется, его получают при электролизе расплавов фторидов металлов.

Пример 1. Электролиз водного раствора сульфата натрия (Na 2 SO 4) концентрация 1 моль/л (pH =7) с инертным анодом (графит).

В растворе в результате диссоциации Na 2 SO 4 ↔ 2Na + + SO 4 2- образуются ионы Na + и SO 4 2- . При рН =7 равновесный потенциал водородного электрода равен В, а В. Поскольку , то на катоде происходит восстановление молекул воды с образованием водорода. Так как SO 4 2- –кислородосодержащий анион, то на аноде происходит окисление молекул воды с образованием кислорода:

катод (+) (С) 2H 2 O + 2ē ®H 2 ­ + 2OH -

анод (-)(С) 2H 2 O ® О 2 ­ + 4H + + 4ē

Суммарное уравнение протекающей в системе реакции:

4H 2 O+ 4ē +2H 2 O ® 2H 2 +4OH - + О 2 + 4H + + 4ē

2H 2 O® 2H 2 ­ + О 2 ­

При электролизе происходит разложение воды, растворенное вещество в этом случае не участвует в электрохимических реакциях. Его роль сводится к переносу зарядов в электролите (ток внутренней цепи).

Пример 2. Электролиз водного раствора нитрата серебра AgNO 3 с инертным анодом (графит).

В растворе в результате диссоциации AgNO 3 ↔ Ag + + NO 3 - образуются ионы Ag + и NO 3 - .

Поскольку стандартный электродный потенциал В положительный, то на катоде происходит восстановление ионов серебра. Так как NO 3 - – кислородосодержащий анион, то на аноде происходит окисление молекул воды с образованием кислорода:

катод (+)(С) Ag + + ē ®Ag

анод (-)(С) H 2 O ® О 2 ­ + 4H + + 4ē

Суммарное уравнение реакции, протекающей в системе:

4Ag + + 2H 2 O+ 4ē ® 4 Ag +О 2 + 4H + + 4ē

4AgNO 3 + 2H 2 O® 4 Ag + О 2 ­+4H NO 3

Пример 3. Электролиз водного раствора сульфата меди CuSO 4 с медными электродами.

В растворе в результате диссоциации CuSO 4 ↔ Cu 2+ + SO 4 2- образуются ионы Cu 2+ и SO 4 2- .

Стандартный электродный потенциал В положительный, поэтому на катоде происходит восстановление ионов меди. Так как медный электрод является активным (растворимым) анодом, то при электролизе происходит окисление меди:

катод (+) (Сu) Cu 2+ + 2ē ® Cu

анод (-)(Сu) Cu ® Cu 2+ + 2ē

Из суммарного уравнения протекающей в системе реакции:

Cu 2+ + 2ē + Cu ® Cu + Cu 2+ + 2ē

видно, что в этом случае образование новых веществ не происходит. При электролизе осуществляется перенос атомов меди с анода на катод.

Электролиз является основой различных технологических процессов, в частности:

При электролизе расплавленных соединений получают алюминий, магний, щелочные и щелочноземельные и другие химически активные металлы (электрометаллургия);

При электролизе водных растворов получают металлы, не загрязненные примесями: медь, никель, цинк, марганец (гидрометаллургия);

Электролиз водных растворов используют для получения на поверхности изделий металлических покрытий (гальваностегия) или точных металлических копий (гальванопластика);

Электролиз с растворимым анодом лежит в основе процессов рафинирования (очистки) металлов: меди, никеля, серебра;

Процессы анодного растворения используются для электрохимической обработки металлов: электрополирования, электро-фрезерования и др.

Электролизом получают различные химические вещества: хлор, водород и кислород, гидроксид натрия и др.

Контрольные вопросы.

1. Электрохимический процесс. Количественные соотношения между величиной тока и количеством реагентов.

2. Двойной электрический слой на границе «металл – электролит». Электродный потенциал. Уравнение Нернста.

3. Химический и концентрационный гальванические элементы: ЭДС, электродные реакции.

4. Скорость электрохимической реакции. Поляризация электродов.

5. Химические источники тока.

6. Электролиз расплавов и водных растворов электролитов.

Загрузка...